首页|基于移动窗口的层级式生成对抗网络模型分析

基于移动窗口的层级式生成对抗网络模型分析

扫码查看
阐述一种基于移动窗口的层级式生成对抗网络模型.针对现有基于Transformer的生成对抗网络模型无法获取多尺度特征等问题,结合移动窗口和窗口掩码等策略对原有模型进行改进.在生成器和判别器中通过移动窗口和窗口划分的方式,大幅度降低注意力计算时的计算复杂度,实现注意力窗口之间的相互通信.并且在注意力模块加入移动窗口的注意力掩码,在保证整体特征图语义信息不被破坏的情况下,实现对注意力窗口的批次注意力计算.通过在多个数据集上的实验证明该方法的有效性.
Analysis of Hierarchical Generative Adversarial Network Model Based on Shifted Window
This paper describes a hierarchical generative adversarial network model based on a sliding window.To address the issues of existing transformer-based generative adversarial network models,such as the inability to obtain multi-scale features,the model is improved by combining sliding windows and window masking strategies.By using sliding windows and window partitioning in the generator and discriminator,the computational complexity of attention calculation is significantly reduced,while achieving mutual communication between attention windows.Furthermore,by adding a sliding window attention mask to the attention module,batch attention calculation for attention windows is achieved while ensuring that the semantic information of the overall feature map is not destroyed.The effectiveness of this method is demonstrated through experiments on multiple datasets in the article.

image generationgenerative adversarial networkmulti-head attention mechanismTransformerfeature extraction network

黄洋

展开 >

中国科学技术大学计算机科学与技术学院,安徽 230026

图像生成 生成对抗网络 多头注意力机制 Transformer 特征提取网络

2024

电子技术
上海市电子学会,上海市通信学会

电子技术

影响因子:0.296
ISSN:1000-0755
年,卷(期):2024.53(4)