首页|基于BiLSTM-CRF模型识别细密地址的特定标注方法分析

基于BiLSTM-CRF模型识别细密地址的特定标注方法分析

扫码查看
阐述针对人为地址输入进行识别,通过深度学习将语义相似相近的地址完成实体名识别.以BiLSTM-CRF进行数据集的训练,针对前后文联系确定最佳可能出现地址,将海量地址进行特征提取和分类构造,得出多数F1指标91%以上.模型应用于实际数据中,验证了该方法的有效性.
Analysis of Specific Annotation Methods for Identifying Fine-grained Addresses Based on BiLSTM-CRF model
This paper describes the recognition of human input addresses,using deep learning to recognize entity names of semantically similar addresses.Train the dataset with BiLSTM-CRF,determine the best possible address based on the previous and subsequent connections,extract features and classify massive addresses,and obtain a majority of F1 indicators above 91%.The model was applied to actual data to verify the effectiveness of the method.

named entity recognitionlong short-term memory networkconditional random fieldinformation extraction

邱坚、张润熙、沈俊杰

展开 >

中国移动上海分公司网络优化中心,上海 200060

命名体识别 长短时记忆网络 条件随机场 信息抽取

2024

电子技术
上海市电子学会,上海市通信学会

电子技术

影响因子:0.296
ISSN:1000-0755
年,卷(期):2024.53(4)