首页|基于深度学习的文本分类算法分析

基于深度学习的文本分类算法分析

扫码查看
阐述一种CNN-LSTM混合模型的设计,通过CNN提取文本关键词特征,创建LSTM学习语义依赖关系.与传统SVM和BiLSTM模型比较,该混合模型取得了更高的分类准确率.实验结果表明,CNN-LSTM模型可以实现准确的文本分类.
Analysis of Text Classification Algorithm Based on Deep Learning
This paper expounds the construction of a CNN-LSTM hybrid model,which extracts text keyword features through CNN and learns semantic dependency relationships through LSTM.Compared with traditional SVM and BiLSTM models,this hybrid model achieves higher classification accuracy.The experimental results indicate that the CNN-LSTM model can achieve accurate text classification.

text classificationdeep learningCNNRNN

贾云洁

展开 >

太原学院,山西 030032

文本分类 深度学习 卷积神经网络 循环神经网络

2024

电子技术
上海市电子学会,上海市通信学会

电子技术

影响因子:0.296
ISSN:1000-0755
年,卷(期):2024.53(7)