首页|基于XGBoost与DBSCAN算法的停电故障聚类分析

基于XGBoost与DBSCAN算法的停电故障聚类分析

扫码查看
阐述配电网停电故障数据特征评估和筛选,采用DBSCAN算法对筛选后的特征进行密度聚类.实验表明,该方法使故障分类准确率提升至93.5%,较传统方法提高16.8%,且能准确识别异常故障类型.
Analysis of Power Outage Fault Clustering Based on XGBoost and DBSCAN Algorithms
This paper describes the feature evaluation and screening of power outage fault data in distribution networks,and uses the DBSCAN algorithm to perform density clustering on the screened features.The experiment shows that this method improves the accuracy of fault classification to 93.5%,which is 16.8%higher than traditional methods,and can accurately identify abnormal fault types.

fault clusteringXGBoost algorithmDBSCAN algorithmfeature engineering

许国杰、孙亚林、张龙、潘虹、宋醒亚

展开 >

国网金昌供电公司,甘肃 737100

故障聚类 XGBoost算法 DBSCAN算法 特征工程

2024

电子技术
上海市电子学会,上海市通信学会

电子技术

影响因子:0.296
ISSN:1000-0755
年,卷(期):2024.53(10)