首页|基于深度学习的凝聚态物理相变预测与控制策略分析

基于深度学习的凝聚态物理相变预测与控制策略分析

扫码查看
阐述基于深度学习的凝聚态物理相变预测与控制技术,通过分析和比较传统方法的局限性,指出深度神经网络可以有效获取各类复杂相变过程的规律,并实现对过程的精确控制.构建统一的预测与控制框架,设计高效的模块化网络架构,创新性地引入强化学习算法.在大规模材料相变数据上的验证表明,所设计的深度学习方法可以成功预测多类型相变的发生状态,并通过稳健高效的策略准确驱动相变过程达到期望状态.
Analysis of Prediction and Control Strategies for Condensed Matter Physical Phase Transitions Based on Deep Learning
This paper describes the prediction and control technology of condensed matter physical phase transition based on deep learning.By analyzing and comparing the limitations of traditional methods,it points out that deep neural networks can effectively obtain the laws of various complex phase transition processes and achieve precise control of the processes.It constructs a unified prediction and control framework,designs an efficient modular network architecture,and innovatively introduces reinforcement learning algorithms.The validation on large-scale material phase transition data shows that the designed deep learning method can successfully predict the occurrence states of multiple types of phase transitions and accurately drive the phase transition process to the desired state through robust and efficient strategies.

deep learningphase transition predictionprocess controlreinforcement learning

陈晓洁

展开 >

广东理工学院,广东 526000

深度学习 相变预测 过程控制 强化学习

2024

电子技术
上海市电子学会,上海市通信学会

电子技术

影响因子:0.296
ISSN:1000-0755
年,卷(期):2024.53(10)