首页|水力发电中的设备状态智能诊断技术分析

水力发电中的设备状态智能诊断技术分析

扫码查看
阐述数据采集与预处理、特征提取与选择、智能诊断模型构建等关键技术,提出基于卷积神经网络和长短期记忆网络相结合的深度学习诊断模型,以实现对水电站电气设备状态的精准评估和故障预警.
Analysis of Intelligent Diagnosis Technology for Equipment Status in Hydroelectric Power Generation
This paper describes key technologies such as data collection and preprocessing,feature extraction and selection,and intelligent diagnostic model construction.It proposes a deep learning diagnostic model based on a combination of convolutional neural networks and long short-term memory networks to achieve accurate evaluation and fault warning of electrical equipment status in hydropower stations.

intelligent diagnosisdeep learningequipment status assessmenthydroelectric power plants

肖飞、薛林锋、叶志华

展开 >

天生桥一级水电开发有限责任公司水力发电厂,贵州 551700

广州擎天实业有限公司,广东 510860

智能诊断 深度学习 设备状态评估 水力发电站

2024

电子技术
上海市电子学会,上海市通信学会

电子技术

影响因子:0.296
ISSN:1000-0755
年,卷(期):2024.53(11)