首页|基于蚁群和自适应滤波的模糊聚类图像分割

基于蚁群和自适应滤波的模糊聚类图像分割

扫码查看
为了改进模糊C均值聚类(FCM)算法对初始聚类中心敏感、抗噪性能较差、运算量大的问题,提出一种新的基于蚁群和自适应滤波的模糊聚类图像分割方法(ACOAFCM).首先,该方法利用改进的蚁群算法确定初始聚类中心,作为FCM初始参数,克服FCM算法对初始聚类中心的敏感;其次,采用自适应中值滤波抑制图像噪声干扰,增强算法的鲁棒性;最后,用直方图特征空间优化FCM目标函数,对图像进行分割,减少运算量.实验结果表明,该方法克服了FCM算法对初始聚类中心的依赖,抗噪能力强,收敛速度快,分割精度高.
Image segmentation algorithm of fuzzy clustering based on ant colony and adaptive filtering
As fuzzy C-means clustering (FCM) algorithm is sensitive to the initial clustering centre,and lacks enough robustness and also has big computational cost,an novel image segmentation algorithm based on ant colony and histogram fuzzy clustering is proposed.Firstly,the algorithm determines the initial clustering centre as the original parameter of FCM using ant colony algorithm,so as to overcome the sensitivity to the initial clustering centre.Secondly,the algorithm restrains the interference of image noise and enhances the robustness of algorithm by adaptive median filter.Finally,the algorithm optimizes the objective function of FCM with characteristic space of histogram in order to reduce calculation.Experimental results indicate that this algorithm overcomes the dependence on the initial clustering centre of FCM,which brings high robustness and segmentation accuracy,and has more faster convergence speed.

FCM clustring algorithmant algorithmimage segmentationadaptive median filtercharacter of histogram

张自嘉、岳邦珊、潘琦、季俊、陈海秀

展开 >

南京信息工程大学信息与控制学院,江苏南京210044

江苏省大气环境与装备技术协同创新中心,江苏南京210044

FCM聚类算法 蚁群算法 图像分割 自适应中值滤波 直方图特征

国家自然科学基金国家自然科学基金

6117202951206082

2015

电子技术应用
华北计算机系统工程研究所(中国电子信息产业集团有限公司第六研究所)

电子技术应用

CSTPCD北大核心
影响因子:0.567
ISSN:0258-7998
年,卷(期):2015.41(4)
  • 8
  • 5