首页|基于动态自适应计算引擎的MobileNetV3网络加速器设计

基于动态自适应计算引擎的MobileNetV3网络加速器设计

扫码查看
现有面向高效轻量化MobileNetV3网络的加速方法通常采用高度定制的计算引擎进行模型计算,从而限制了加速器的可扩展性使其仅适用于小型网络或资源丰富的硬件平台.针对此问题,提出了基于动态自适应计算引擎的MobileNetV3网络加速器.首先,设计了局部感知区域卷积的流水线推理架构实现特征、权重的高度并行处理和缓冲调度.其次,提出全局自适应的点卷积方法优化点卷积,并结合空间探索获得最优的参数配置以实现最大计算并行性.此外,加速器可以根据模型参数变化动态配置以适应不同场景.实验结果显示加速器推理速度为8 F/s,是现有方法速度的2.7倍.
Design of MobileNetV3 network accelerator based on dynamic adaptive computing engine
Existing acceleration methods for efficient and lightweight MobileNetV3 networks usually use highly customized com-puting engines for model calculations,which limits the scalability of the accelerator and makes it only applicable to small net-works or resource-rich hardware platforms.To address this problem,this paper proposes a MobileNetV3 network accelerator based on a dynamic adaptive computing engine.Firstly,a pipeline inference architecture of local perception area convolution is designed to achieve highly parallel processing and buffer scheduling of features and weights.Secondly,a global adaptive point convolution method is proposed to optimize point convolution and combine spatial exploration to obtain the optimal parameter configuration to achieve maximum computational parallelism.In addition,the accelerator can be dynamically configured accord-ing to model parameter changes to adapt to different scenarios.Experimental results show that the accelerator's inference speed is 8 F/s,which is 2.7 times as fast as existing methods.

convolutional neural networksparallel computingdynamic adaptationedge deviceshardware acceleration

项浩斌、杨瑞敏、吴文涛、李春雷、董燕

展开 >

中原工学院信息与通信工程学院,河南郑州 450007

电子科技大学自动化工程学院,四川成都 610000

卷积神经网络 并行计算 动态自适应 边缘设备 硬件加速

2025

电子技术应用
华北计算机系统工程研究所(中国电子信息产业集团有限公司第六研究所)

电子技术应用

影响因子:0.567
ISSN:0258-7998
年,卷(期):2025.51(1)