首页|基于多模态特征融合的Android恶意程序检测方法研究

基于多模态特征融合的Android恶意程序检测方法研究

扫码查看
现有Android恶意程序检测方法主要使用单模态数据来表征程序特征,未能将不同的特征信息进行充分挖掘和融合,导致检测效果不够理想.为了提升检测的准确率和鲁棒性,提出一种基于多模态特征融合的Android恶意程序检测方法.首先对权限信息进行编码处理并将Dalvik字节码数据可视化为"矢量"RGB图像,然后构建前馈神经网络和卷积神经网络分别对文本和图像模态表征的数据进行特征提取,最后对提取的不同模态特征向量分配不同的权重并相加进行融合后对其进行分类.实验结果表明,该方法对Android恶意程序的识别准确率和F1分数都达到了 98.66%,且具有良好的鲁棒性.
Research on Android malware detection method based on multimodal feature fusion
Existing Android malware detection methods mainly use single-modal data to characterize program features,but fail to fully mine and fuse different feature information,resulting in unsatisfactory detection results.In order to improve the accuracy and robustness of detection,a method for detecting Android malware based on multimodal feature fusion is proposed.Firstly,the permission information is encoded and the Dalvik bytecode data is visualized as a"vector"RGB image.Then,a feedforward neu-ral network and a convolutional neural network are constructed to extract features from the data represented by text and image modalities,respectively.Finally,different weights are assigned to the extracted feature vectors of different modalities,which are added and fused before classification.Experimental results show that the recognition accuracy and F1 score of this method for Android malware both reach 98.66%,and it has good robustness.

Androidmalwaremultimodalityfeedforward neural networkconvolutional neural network

葛继科、何明坤、陈祖琴、凌劲、张一帆

展开 >

重庆科技大学计算机科学与工程学院,重庆 401331

Android 恶意程序 多模态 前馈神经网络 卷积神经网络

2025

电子技术应用
华北计算机系统工程研究所(中国电子信息产业集团有限公司第六研究所)

电子技术应用

影响因子:0.567
ISSN:0258-7998
年,卷(期):2025.51(1)