首页|基于改进Res2Net与迁移学习的水果图像分类

基于改进Res2Net与迁移学习的水果图像分类

扫码查看
针对传统水果图像分类算法特征学习能力弱和细粒度特征信息表示不强的缺点,提出一种基于改进Res2Net与迁移学习的水果图像分类算法。首先,针对网络结构,在Res2Net的残差单元中引入动态多尺度融合注意力模块,对各种尺寸的图像动态地生成卷积核,利用meta-ACON激活函数优化ReLU激活函数,动态学习激活函数的线性和非线性,自适应选择是否激活神经元;其次,采用基于模型迁移的训练方式进一步提升分类的效率与鲁棒性。实验结果表明,该算法在Fruit-Dataset和Fruits-360数据集上的测试准确率相比Res2Net提升了 1。2%和 1。0%,召回率相比Res2Net提升了 1。13%和0。89%,有效提升了水果图像分类性能。
Fruit image classification based on improved Res2Net and transfer learning
Aiming at the shortcomings of the traditional fruit image classification algorithm with weak feature learning ability and weak representation of fine-grained feature information,this paper proposes a fruit image classification algorithm based on improved Res2Net with migration learning.First,for the network structure,a dynamic multi-scale fusion attention module is introduced into the residual unit of Res2Net to dynamically generate convolution kernels for images of various sizes,optimize the ReLU activation function by using the meta-ACON activation function,and dynamically learn the linearity and nonlinearity of the activation function to adaptively choose whether to activate the neurons or not;second,a training method based on model migration is used to further improve the efficiency and robustness of classification.The experimental results show that the algorithm proposed in this paper improves the test accuracy on Fruit-Dataset and Fruits-360 dataset by 1.2%and 1%compared with Res2Net,and the recall rate improves by 1.13%and 0.89%compared with Res2Net,which effectively improves the performance of fruit image classification.

image classificationRes2Netdynamic multi-scale fusion attentionactivation functiontransfer learning

吴迪、肖衍、沈学军、万琴、陈子涵

展开 >

湖南工程学院电气与信息工程学院,湘潭 411100

湖南大学机器人视觉感知与控制技术国家工程研究中心,长沙 410082

图像分类 Res2Net 动态多尺度融合注意力 激活函数 迁移学习

2025

电子科技大学学报
电子科技大学

电子科技大学学报

北大核心
影响因子:0.657
ISSN:1001-0548
年,卷(期):2025.54(1)