首页|多无人机辅助的移动边缘计算任务卸载及路径优化方法

多无人机辅助的移动边缘计算任务卸载及路径优化方法

扫码查看
针对多无人机辅助移动边缘计算中的任务卸载决策和路径优化问题,提出了一种基于多智能体深度强化学习的计算任务卸载与路径优化方法,以降低系统总能耗,提升计算性能。首先,设计了多无人机辅助移动边缘计算系统模型,通过软件定义网络技术对无人机网络进行集中管理;然后,在考虑无人机负载及用户设备关联服务公平性的基础上,以系统总能耗为优化目标,通过设计多智能体深度确定性策略梯度算法完成任务卸载与无人机路径管理优化,以实现负载均衡、降低整个系统总能耗。仿真实验结果表明,与其他基准算法相比,所提方法在充分利用无人机辅助移动边缘计算系统计算资源的基础上,可在一定程度上降低系统能耗和计算延迟,保证整个系统的高效、稳定和可靠性,较好地满足移动边缘用户的服务请求。
MATOPO:A multi-UAV assisted task offloading and path optimization method for moving edge computing
Aiming at solving the task offloading and path planning challenge of multi-UAV assisted mobile edge computing,a multi-agent deep reinforcement learning method for task offloading and path optimization is proposed to reduce the total energy consumption of the system and improve computing performance.Firstly,the model of multi-UAV assisted mobile edge computing system is designed,and the UAV network is centrally managed by software-defined network technology.Then,on the basis of considering the load of the UAV and the fairness of the associated service of the user equipment,taking the total energy consumption of the system as the optimization goal,the multi-agent depth deterministic strategy gradient algorithm is designed to complete the task unloading and the path management optimization of the UAV,so as to achieve load balancing and reduce the total energy consumption of the whole system.Simulation results show that compared with other benchmark algorithms,the proposed method can reduce system energy consumption and computing delay to a certain extent,ensure the efficiency,stability and reliability of the whole system,and better meet the service requests of mobile edge users on the basis of making full use of the computing resources of UAV-assisted mobile edge computing systems.

mobile edge computingmulti-UAV networktask offloadingpath optimizationmulti-agent deep reinforcement learning

巨涛、李林娟、张文金、张宇斐、火久元

展开 >

兰州交通大学电子与信息工程学院,兰州 730070

移动边缘计算 多无人机网络 任务卸载 路径优化 多智能体深度强化学习

2025

电子科技大学学报
电子科技大学

电子科技大学学报

北大核心
影响因子:0.657
ISSN:1001-0548
年,卷(期):2025.54(1)