首页|基于改进光流的三维医学图像Z轴精度增强方法

基于改进光流的三维医学图像Z轴精度增强方法

扫码查看
三维医学图像在诊断和治疗中具有重要价值,但由于切片结构导致纵轴方向分辨率较低,给三维重建等任务带来一定挑战。针对三维医学图像在z轴方向上分辨率不足的问题,提出了一种基于插帧技术的新方法。该方法通过生成中间切片来提升图像的连续性,间接改善三维重建的质量。设计了一个紧凑型编码器-解码器网络,融合中间光流估计和中间特征重建,旨在克服传统图像处理方法中的模型失真和分辨率限制。此外,该网络通过特征金字塔结构有效融合全局与局部信息,并采用双重损失函数优化图像重建质量和特征空间的几何一致性。实验结果显示,相比现有插帧方法,该方法在图像质量、结构相似性、绝对误差和感知质量等方面实现了明显提升,平均提高约 2。7%到 5。8%。这些结果表明该插帧技术在脑肿瘤数据集上表现良好,展示了在提升医学图像连续性和细节方面的潜在优势。该研究对提高临床诊断的准确性和治疗效果可以产生积极影响,为医学图像处理领域的进一步研究提供了启示。
Enhanced Z-axis precision of 3D medical imaging via improved optical flow method
Three-dimensional medical imaging plays a vital role in diagnosis and treatment.However,due to the structure of the slices,the resolution in the longitudinal direction is relatively low,which poses certain challenges for tasks such as three-dimensional reconstruction.This paper addresses the issue of insufficient resolution in the z-axis direction of three-dimensional medical images and proposes a novel method based on frame interpolation techniques.This method improves image continuity by generating intermediate slices,indirectly enhancing the quality of three-dimensional reconstruction.Aiming to overcome model distortion and resolution limitations inherent in traditional image processing methods,a compact encoder-decoder network is designed to integrate intermediate optical flow estimation and feature reconstruction.Furthermore,the network effectively merges global and local information through a feature pyramid structure and employs a dual loss function to optimize image reconstruction quality and the geometric consistency of the feature space.Experimental results demonstrate that,compared to existing frame interpolation methods,this approach significantly improves image quality,structural similarity,absolute error,and perceptual quality,with an average enhancement of approximately 2.7%to 5.8%.These results indicate that the frame interpolation technique proposed in this research performs well on brain tumor datasets,showcasing its potential advantages in enhancing the continuity and detail of medical images.This research offers a promising direction that could positively impact the accuracy of clinical diagnoses and treatment outcomes,providing new insights for further studies in the field of medical image processing.

three-dimensional image reconstructionframe interpolation techniquesoptical flow estimationimage enhancement

邓尔强、LOO Gowen、朱国淞、肖鹏

展开 >

电子科技大学网络与数据安全四川省重点实验室,成都 610054

三维医学图像 图像插帧 光流估计 图像增强

2025

电子科技大学学报
电子科技大学

电子科技大学学报

北大核心
影响因子:0.657
ISSN:1001-0548
年,卷(期):2025.54(1)