首页|社交网络节点重要性识别研究进展

社交网络节点重要性识别研究进展

扫码查看
准确识别社交网络中的节点重要性对于促进或抑制信息传播、遏制疾病传播具有重要意义,同时在精准营销和社会治理等领域也具有重要理论意义和应用价值。该文从 4个角度对节点影响力识别算法进行总结和梳理,具体包括:基于微观局部结构、中观的社团结构、宏观全局结构及基于机器学习的算法。详细介绍了其中的代表性算法,并从不同层面分析了不同算法的优缺点。此外还总结了常用的传播动力学模型和评价指标。最后提炼了仍需解决的问题和未来可能的研究方向。
Review of social network spreading influence nodes identification
The identification of spreading influence node in social networks aims to uncover individuals or groups that can effectively promote information dissemination or have a significant impact on the network structure,which is helpful for deeply understanding the features of important nodes and their applications in the targeted marketing,rumor containment and so on.This review categorizes existing spreading influence node identification algorithms into four categories:Micro-structure-based(MI),mesoscopic-structure-based(ME),macro-structure-based(MA)and machine-learning-based(ML).It provides a detailed introduction to representative algorithms and analyzes the advantages and disadvantages of each type from different perspectives.Additionally,this review summarizes the commonly used propagation dynamics models and evaluation metrics in this research direction,and finally highlights urgent issues that need to be addressed and potential future research directions.

social networksnode importancecommunity structuremachine learning

郭强、欧阳、江明珠、刘建国

展开 >

上海理工大学管理学院,上海 200093

上海哔哩哔哩科技有限公司人工智能平台部,上海 200433

上海大学管理学院,上海 200444

上海财经大学数字经济系,上海 200433

展开 >

社交网络 节点重要性 社团结构 机器学习

2025

电子科技大学学报
电子科技大学

电子科技大学学报

北大核心
影响因子:0.657
ISSN:1001-0548
年,卷(期):2025.54(1)