首页|复杂网络高阶结构的关联规则挖掘及其应用

复杂网络高阶结构的关联规则挖掘及其应用

扫码查看
网络高阶结构即满足特定条件的子网络,是网络科学领域重要的研究内容.近年来,关于高阶结构的研究不断增加,但是关于高阶结构之间内在联系的研究还相对较少.基于此,根据传统关联规则,定义了高阶结构之间的关联规则评判指标,并提出了一种有效挖掘高阶结构之间关联规则的通用算法框架.利用该算法,在 6个真实世界网络中进行了 3阶高阶结构(即高阶结构包含 3个结点)间的关联规则挖掘.实验结果表明,真实世界网络中高阶结构之间存在强关联规则,且不同真实世界网络中高阶结构之间的关联规则存在差异.此外,将挖掘出的强关联规则应用于链路预测当中,进而实现了链路预测方法.相比于基线方法,所实现的链路预测方法在4个真实世界网络中取得了最好的性能表现.
Association rule mining and applications based on higher-order structures in complex networks
The study of higher-order structures,which refer to subnetworks within a network,is a crucial research topic in network science.In recent years,although the research on higher-order structures has been increasing,there has been relatively little research on the internal connections between higher-order structures.In light of conventional association rules,the evaluation criteria of association rules between higher-order structures are defined,and a general algorithm framework for effectively mining these association rules is proposed.The proposed approach has been applyed to mine association rules among three-order structures in six real-world networks.The results demonstrate strong association rules between higher-order structures in real-world networks,as well as variations in these rules across different networks.Additionally,we apply strong association rules to link prediction,resulting in a new link prediction method.This method outperforms the baseline methods in four real networks.

association rulecomplex networkhigher-order structurelink prediction

胡友鑫、林茂彦、罗剪秋、陈超、黄金煜

展开 >

四川轻化工大学计算机科学与工程学院,宜宾 644000

关联规则 复杂网络 高阶结构 链路预测

2025

电子科技大学学报
电子科技大学

电子科技大学学报

北大核心
影响因子:0.657
ISSN:1001-0548
年,卷(期):2025.54(1)