首页|基于社交媒体数据的城市暴雨洪涝灾害风险评估——以郑州市"7·20"暴雨事件为例

基于社交媒体数据的城市暴雨洪涝灾害风险评估——以郑州市"7·20"暴雨事件为例

扫码查看
近年来强降雨引发的城市洪涝灾害事件趋多,严重危害了人民的生命健康和财产安全,而客观、准确地开展城市暴雨洪涝灾害风险评估对于有效提升防灾减灾水平至关重要.但是,城市灾害点部分基础数据资料的缺失和滞后限制了城市暴雨洪涝灾害风险评估结果的准确性.随着移动互联技术的发展,民众在社交媒体上发布的相关灾害信息逐渐汇集成一种具有海量、时效性强和主题明确等特征的社交媒体数据资源,将其引入城市暴雨洪涝灾害风险评估工作对于准确刻画城市暴雨洪涝灾害的全貌无疑具有显著意义.以2021年郑州市"7·20"暴雨事件为例,首先从气象因素、基础地理信息、社会经济因素三方面选取了 13个影响因子,然后基于爬虫技术获取微博数据中的内涝点信息,最后基于GBDT、XGB、RF和AdaB 4种机器学习模型对郑州市"7·20"暴雨洪涝灾害进行风险评估.结果表明:①基于上述模型得到的4组指标权重具有统计意义上的一致性,在各影响因子中,道路密度、植被覆盖指数、半小时最大降雨量和日最大降雨量在4组指标重要性排序中均位列前5,表明上述影响因子是本次暴雨洪涝灾害的主要致灾因素;②基于皮尔逊相关系数检验发现上述4种模型评估结果间的相关程度较高,所得出的极高风险区均集中在郑州市五大主城区的中心部分、中牟市东北部、新密市米村镇及城关镇、巩义市巩义站周边;③上述4种模型的AUC和ACC值均超过0.7,证实了机器学习模型在城市暴雨洪涝灾害风险评估中的有效性;相较于GBDT、XGB和RF模型,AdaB模型的评估结果精度最高,且得到的高风险与极高风险区的Rei值之和最大,表明其评估结果与实际情况相符.本研究通过将社交媒体数据引入城市暴雨洪涝灾害风险评估工作有效地提升了评估结果的准确性,可为郑州市及其他城市在类似强降水事件下的洪涝灾害风险预警和应急处置提供决策依据.
Urban storm flood disaster risk assessment based on social media data—A case study of the"7·20"rainstorm event in Zhengzhou City
In recent years,the increasing occurrences of urban flood disasters triggered by heavy rainfall have severe-ly endangered people's lives,health,and property safety.Objective and accurate urban flood disaster risk assessment is crucial for effectively enhancing disaster prevention and reduction capabilities.However,the lack and lag of basic data for urban disaster points restrict the accuracy of urban storm flood disaster risk assessment results.With the development of mobile internet technology,the relevant disaster information posted by the public on social media gradually accumulates into a massive,timely,and thematically clear resource known as social media data.Introdu-cing this resource into urban storm flood disaster risk assessment work undoubtedly holds significant importance in accurately depicting the overall picture of urban storm flood disasters.Taking the"7·20"rainstorm event in Zhengzhou City in 2021 as an example,this study first selected thirteen influencing factors from meteorological fac-tors,basic geographic information,and socio-economic factors.Then,leveraging web crawling technology,it ob-tained information on waterlogging points from Weibo data.Finally,using four machine learning models,namely GBDT,XGB,RF,and AdaB,the study conducted a risk assessment of the rainstorm flood disaster in Zhengzhou"7·20".The results are as follows:① The four sets of indicator weights obtained based on the above models are statistically consistent.Among the influencing factors,road density,vegetation coverage index,maximum rainfall in half an hour,and maximum daily rainfall all rank in the top five in terms of importance in the four sets of indicator importance rankings,indicating that these factors are the main causes of the rainstorm flood disaster;② Based on the Pearson correlation coefficient test,it is found that the correlation between the evaluation results of the four models is relatively high.The areas with extremely high risk are concentrated in the central parts of the five main urban areas of Zhengzhou,the northeast part of Zhongmu City,Micun Town and Chengguan Town in Xinmi City,and the surrounding areas of Gongyi Station in Gongyi City;③ The AUC and ACC values of the four models are all above 0.7,confirming the effectiveness of machine learning models in urban flood risk assessment.Compared with the GBDT,XGB,and RF models,the AdaB model has the highest accuracy,and the sum of the Rei values of the high-risk and extremely high-risk areas obtained by it is the largest,indicating that its evaluation results are consistent with the actual situation.By introducing social media data into urban storm flood disaster risk assessment work,this study effectively enhances the accuracy of the assessment results,providing decision-making basis for risk warning and emergency response to urban flood disasters in Zhengzhou City and similar cities under heavy rainfall events.

urban flood disasterrisk assessmentmachine learning modelsocial media data"7·20"rain-storm event in Zhengzhou City

王德运、张露丹、吴祈

展开 >

中国地质大学(武汉)经济管理学院,湖北武汉 430078

中国地质大学(武汉)自然灾害风险防控与应急管理实验室,湖北 武汉 430074

城市暴雨洪涝灾害 风险评估 机器学习模型 社交媒体数据 郑州市"7·20"暴雨事件

国家自然科学基金湖北省自然科学基金湖北省社会科学基金一般项目陕西省应急管理研究院科研项目国家社会科学基金重点项目

722741862022CFD128HBSKJJ202332632024SXYY0123AZD072

2024

安全与环境工程
中国地质大学

安全与环境工程

CSTPCD北大核心
影响因子:1.03
ISSN:1671-1556
年,卷(期):2024.31(3)
  • 33