首页|基于神经网络的WiFi信号度量学习方法

基于神经网络的WiFi信号度量学习方法

扫码查看
WiFi室内定位中,信号空间度量主要为先验距离度量及其组合.然而实际情况中,最佳信号空间距离度量与先验的距离度量不存在显式联系.文中提出一种基于神经网络的信号空间距离度量方法,通过样本训练,得到对位置空间近邻关系的估计,从而进行定位.通过开源数据集实验,证明了本方法相比于传统的基于欧式距离、Jaccard距离、基于秩的距离以及CMD复合距离的度量方式,平均定位误差分别下降了 0.6m,1.8m,1.3m和0.4 m,能有效提高定位精度.
Neural Network Based on Learning Method for WiFi Metric in Signal Space
In WiFi based indoor positioning,reasonable metric definitions are needed in the signal space to find the correlations in the signal space.The state-of-art metrics in the signal space are mostly apriori metric definitions and their combinations.However,for practical applications,the best metric definition is not among the apriori metric definitions and their combinations.In this paper,a neural network based learning method is proposed,which can predict the adjacency relations in the position space to indoor po-sitioning through learning from observations.At last,an open source dataset is adopted to experiment over the proposed method and the results have validated the proposed method.Compared with traditional metrics such as Euclidean metric,Jaccard metric,rank based metric and CMD compound metric,the fi-nal average positioning error has a decrease of about 0.6m,1.8m,1.3m and 0.4 respectively,which shows that the proposed method can indeed increase the positioning accuracy.

indoor positioningneural networkmetric in signal space

赵鹏、尹广举、朱雷、李昆

展开 >

燕京理工学院智能工程学院,河北廊坊 065201

室内定位 神经网络 信号空间度量

2024

中国电子科学研究院学报
中国电子科学研究院

中国电子科学研究院学报

影响因子:0.663
ISSN:1673-5692
年,卷(期):2024.19(2)
  • 21