首页|基于多尺度循环卷积神经网络的卫星通信信号识别

基于多尺度循环卷积神经网络的卫星通信信号识别

扫码查看
针对目前的卫星通信调制分类算法大多忽略了不同尺度特征的融合问题,提出了一个多尺度循环卷积神经网络模型.该网络结构整合了双分支设计、压缩与激励策略、多尺度残差网络以及长短期记忆网络,旨在全面捕捉信号的多尺度特性并有效建模时间序列.实验结果表明:文中所提模型在0dB以上的识别准确率达到了 97.1%,在13 dB时更进一步提升至99%;与经典的CNN2模型和LSTM2模型相比,在识别准确率上展现了显著优势,且相较于识别性能接近的CLDNN2模型,参数量减少了 47.7%,训练时间缩短了 68%;尤其是QAM16和QAM64两种调制样式识别准确率显著上升并且保持较高水平,这也进一步证实了模型多尺度特征融合策略的有效性.
Satellite Communication Signal Recognition Based on Multi-Scale Recurrent Convolutional Neural Network
Addressing the current oversight of feature fusion across different scales in satellite commu-nication modulation classification algorithms,we propose a Multi-Scale Recurrent Convolutional Neu-ral Network(MSRC)model.This network integrates dual-branch design,compression and excita-tion strategy,multi-scale residual networks,and long short-term memory networks,aiming to com-prehensively capture the multi-scale features of signals and effectively model time sequences.Experi-mental results demonstrate that the proposed model achieves a recognition accuracy of 97.1%above 0 dB,further increasing to 99%at 13 dB.In comparison to classical CNN2 and LSTM2 models,our model exhibits significant advantages in recognition accuracy.Moreover,compared to the closely-performing CLDNN2 model,our model reduces parameter quantity by 47.7%and shortens training time by 68%.Notably,the recognition accuracy of QAM 16 and QAM64 modulation styles notably improves and maintains a high level,further confirming the effectiveness of the model's multi-scale feature fusion strategy.

automatic modulation recognitionmulti-scale feature fusionconvolutional neural networkdeep learning

袁中群、陈卫、梁栋、王成东、张恒

展开 >

安徽大学互联网学院,安徽合肥 230601

自动调制识别 多尺度特征融合 卷积神经网络 深度学习

天基综合信息系统重点实验室开放基金

2024

中国电子科学研究院学报
中国电子科学研究院

中国电子科学研究院学报

影响因子:0.663
ISSN:1673-5692
年,卷(期):2024.19(3)