首页|社区发现方法研究综述

社区发现方法研究综述

扫码查看
互联网技术的快速进步带动了网络数据的指数级增长,如何在庞杂的网络数据中精准地识别社区结构,对于深入理解网络的拓扑结构、分析网络舆论等研究领域具有显著的意义.社区结构是复杂网络研究的关键领域和核心特征,在揭示网络功能的本质方面有至关重要的作用.本文对社区发现算法的演变和分类进行了系统梳理,特别介绍了图神经网络、图卷积神经网络和自动编码器等基于深度学习的方法的原理和特性,对此类方法的算法优化与应用的研究成果进行总结,并提出未来社区发现算法可能的研究方向.
Comprehensive Review of Community Detection Methods
The rapid advancement of internet technology has led to an exponential growth in network da-ta.Accurately identifying community structures within this vast and complex pool of network data is of significant importance for in-depth understanding of the network's topological structure,analyzing public opinion on networks,and other research areas.Community structures are a key domain and core feature of complex network research,playing a vital role in uncovering the essential functions of networks.This article systematically reviews the evolution and classification of community detection algorithms,with a special focus on the principles and characteristics of deep learning-based methods such as graph neural networks,graph convolutional neural networks,and autoencoders.It summarizes the research achieve-ments in algorithm optimization and application of such methods and proposes potential research directions for future community detection algorithms.

community detectiondeep learninggraph neural networkcomplex network

冯拓宇、刘佳宁、曹子奇、郭静、杨云祥

展开 >

中电科电科院科技集团有限公司,北京 100041

北京大学,北京 100871

中电科海洋信息技术研究院有限公司,海南陵水 572426

社区发现 深度学习 图神经网络 复杂网络

海南省"南海新星"科技创新人才平台项目

2024

中国电子科学研究院学报
中国电子科学研究院

中国电子科学研究院学报

影响因子:0.663
ISSN:1673-5692
年,卷(期):2024.19(6)