首页|可重构智能表面辅助毫米波MIMO信道估计

可重构智能表面辅助毫米波MIMO信道估计

扫码查看
在可重构智能表面(Recongigurable Intelligent Surface,RIS)辅助毫米波多输入多输出(Mul-tiple Input Multiple Output,MIMO)系统中,针对毫米波引入的信道矩阵稀疏性,以及RIS引入的高维度信道矩阵,提出一种基于压缩感知和深度学习相结合的信道估计算法.首先,将少量RIS元件与射频链路链接,构建部分有源RIS元件辅助毫米波MIMO通信系统;其次,利用不同子载波之间的角域公共稀疏性,使用稀疏度自适应匹配(Sparse Adaptive Matching Pursuit,SAMP)算法重构信道矩阵,并将其视为二维含噪图像;最后,使用对称双路去噪网络(Symmetric Two-Way Denoising Network,STDN)对二维含噪图像去噪.其中,STDN由两条并行对称路径组成,可在不同尺度下提取特征,去除图像噪声,并将两路特征图整合,输出去噪信道矩阵.仿真结果表明,文中所提SAMP-STDN算法提高了信道估计精度.
Reconfigurable Intelligence Surface Assisted Millimeter Wave MIMO Channel Estimation
In the reconfigurable smart surface(RIS)assisted millimeter-wave multiple-input multiple-output(MIMO)system,a channel estimation algorithm based on compressed sensing and deep learning is proposed for the sparsity of channel matrix introduced by millimeter-wave and the high-dimensional channel matrix introduced by RIS.Firstly,a small number of RIS components are linked to the RF link to construct a partial active RIS component-assisted millimeter-wave MIMO communication system.Sec-ondly,using the common sparsity of the angular domain between different subcarriers,the channel matrix is reconstructed by the sparsity adaptive matching(SAMP)algorithm and regarded as a two-dimensional noisy image.Finally,the symmetric two-way denoising network(STDN)is used to denoise the two-di-mensional noisy image.Among them,STDN is composed of two parallel symmetric paths,which can ex-tract features at different scales,remove image noise,and integrate the two feature maps to output the de-noising channel matrix.The simulation results show that the proposed SAMP-STDN algorithm improves the channel estimation accuracy.

reconfigurable intelligent surfacechannel estimationcompressed sensingdeep learning

郑娟毅、杨朴真

展开 >

西安邮电大学通信与信息工程学院,陕西西安 710121

可重构智能表面 信道估计 压缩感知 深度学习

2024

中国电子科学研究院学报
中国电子科学研究院

中国电子科学研究院学报

影响因子:0.663
ISSN:1673-5692
年,卷(期):2024.19(7)