首页|基于特征增强和注意力聚焦的交通标志检测算法

基于特征增强和注意力聚焦的交通标志检测算法

扫码查看
针对传统方法无法应对交通标志检测中目标小、背景复杂等难点问题,本文提出一种基于特征增强和注意力聚焦的交通标志检测算法.首先,设计了双主干网络,对浅层特征信息与深层语义信息进行融合和增强,缓解颈部网络特征信息因多次下采样导致信息丢失和融合不充分的问题.通过增加小目标检测层,更好地适应自然场景下小目标交通标志的检测;其次,设计了 CA3注意力模块,将通道特征与空间位置信息互补地应用到特征图中,降低复杂背景的噪声干扰;最后,采用WIoUv3 Loss,动态地对梯度增益进行合理分配,及时降低数据集里低质量样本产生的有害梯度.实验结果表明,在CCTSDB 2021和GTSDB数据集上,本文提出的模型相较于YOLOv5分别实现了4.30%和1.10%的平均精度(mAP)提升.相较于其他主流模型,该模型在复杂道路场景下展现出了对交通标志更优的检测效果.
Traffic Sign Detection Algorithm Based on Feature Enhancement and Attention Focusing
The challenges of small targets and complex backgrounds in traffic sign detection cannot be ef-fectively addressed by traditional methods.To this end,this paper proposes a traffic sign detection algo-rithm based on feature enhancement and attention focusing.Firstly,a dual-backbone network is designed to fuse and enhance the shallow feature information and the deep semantic information,so as to alleviate the problem of information loss and insufficient fusion of the neck network feature information due to multiple down sampling.By adding a small target detection layer,it is better adapted to the detection of small target traffic signs in natural scenes.Secondly,the CA3 attention module was designed to complement the chan-nel features and spatial position information into the feature map to reduce the noise interference of complex backgrounds.Finally,WIoUv3 Loss was used to dynamically allocate the gradient gain reasonably and re-duce the harmful gradient generated by low-quality samples in the data set in time.Experimental results show that the proposed model achieves an average accuracy(mAP)improvement of 4.30%and 1.10%compared with YOLOv5 on the CCTSDB 2021 and GTSDB datasets,respectively.Compared with other ma-instream models,this model shows better detection of traffic signs in complex road scenarios.

traffic signbackground noisefeature enhancementattention mechanismssmall goals de-tectionYOLOv5

张小瑞、吴川、孙伟

展开 >

南京信息工程大学计算机学院,江苏南京 210044

南京工业大学计算机与信息工程学院,江苏南京 211816

南京信息工程大学自动化学院,江苏南京 210044

交通标志 背景噪声 特征增强 注意力机制 小目标检测 YOLOv5

2024

中国电子科学研究院学报
中国电子科学研究院

中国电子科学研究院学报

影响因子:0.663
ISSN:1673-5692
年,卷(期):2024.19(7)