首页|基于联盟博弈的无人机集群任务分配与频谱资源联合规划方法

基于联盟博弈的无人机集群任务分配与频谱资源联合规划方法

扫码查看
针对无人机集群在执行多任务时不合理的任务与频谱资源分配会导致整体效益低下的问题,文中提出了一种基于联盟博弈的无人机集群任务与资源联合规划方法.考虑无人机数量与可用频谱资源受限,无人机集群无法同时开展所有任务的场景,提出将无人机集群任务分别分配到不同阶段先后执行的方案,将每个任务执行阶段作为一个联盟,建立各阶段任务分配问题的联盟博弈模型,引入利他准则提高无人机集群任务完成的整体效益.同时,文中利用粒子群算法优化各阶段任务的无人机数量编配与带宽分配,实现阶段内的无人机任务效益最大.仿真结果验证了联合规划算法收敛性.同时,与传统的帕累托准则和自私准则下构建的联盟博弈模型相比本文提出的方法能够获得更好的收益.
Task Allocation and Joint Spectrum Resource Planning for UAV Cluster Based on Alliance Game Theory
For the problem that unreasonable task and spectrum resource allocation in the execution of multiple tasks by drone swarms will lead to low overall efficiency,this paper proposes a joint planning method for tasks and resources of drone swarms based on coalition games.Considering the scenario where the number of drones and available spectrum resources are limited and the drone swarm cannot carry out all tasks simultaneously,this paper proposes a scheme to distribute the tasks of the drone swarm to differ-ent stages for sequential execution.Each task execution stage is regarded as a coalition,and a coalition game model for the task allocation problem in each stage is established.The altruistic criterion is intro-duced to improve the overall efficiency of task completion of the drone swarm.At the same time,this pa-per uses the particle swarm optimization algorithm to optimize the number allocation of drones and band-width allocation for tasks in each stage to maximize the task efficiency of drones within the stage.Simula-tion results verify the convergence of the proposed joint planning algorithm.At the same time,compared with the coalition game models constructed under the traditional Pareto criterion and selfish criterion,the method proposed in this paper can obtain better benefits.

spectrum allocationalliance gameparticle swarm optimization algorithmtask stage parti-tion

王轶宇、钱鹏智、张余、万发雨

展开 >

南京信息工程大学电子与信息学院,江苏南京 210007

国防科技大学第六十三研究所,江苏南京 210007

频谱分配 联盟博弈 粒子群算法 任务分配 利他准则

2024

中国电子科学研究院学报
中国电子科学研究院

中国电子科学研究院学报

影响因子:0.663
ISSN:1673-5692
年,卷(期):2024.19(7)