首页|一种基于特征融合Transformer的频谱感知方法研究

一种基于特征融合Transformer的频谱感知方法研究

扫码查看
随着无线通信技术的迅速发展,电磁频谱资源日益紧张,高效的频谱感知和信号分类技术变得至关重要,如何实现智能频谱感知与分类识别是当前研究的热点方向.文中针对复杂电磁环境下如何提高信号分类性能,提出了一种基于特征融合Transformer的频谱智能感知方法.该方法设计了特征融合层和改进的位置编码方案,通过优化Transformer架构,增强了模型对不同类型信号的识别能力.实验结果表明,改进模型的准确率表现出显著优势,分类准确率达到99.3%,较现有模型高出4.1个百分点.此外,在不同信噪比条件下,模型展现了卓越的抗噪性能,进一步证明了其在复杂电磁环境中的应用潜力和研究价值.
A Study on a Spectrum Sensing Method Based on Feature-Fusion Transformer
With the rapid development of wireless communication technology,electromagnetic spectrum resources are becoming increasingly scarce,making efficient spectrum sensing and signal classification technologies crucial.Intelligent spectrum sensing and classification have become a hot research topic.This paper proposes a spectrum intelligent sensing method based on feature fusion Transformer to improve signal classification performance in complex electromagnetic environments.The proposed method designs a feature fusion layer and an improved positional encoding scheme,optimizing the Transformer architec-ture to enhance the model's ability to recognize different types of signals.Experimental results show that the improved model demonstrates significant advantages in metrics such as accuracy,achieving a classifi-cation accuracy of 99.3%,which is 4.1 percentage points higher than existing models.Furthermore,the model exhibits excellent noise resistance under different signal-to-noise ratio conditions,further proving its application potential and research value in complex electromagnetic environments.

feature fusionspectrum sensingTransformerclassification accuracynoise immunity

刘思佚、徐东辉、刘丁胤、胡国杰、康凯

展开 >

火箭军工程大学作战保障学院,陕西西安 710025

特征融合 频谱感知 Transformer 分类准确率 抗噪声性能

2024

中国电子科学研究院学报
中国电子科学研究院

中国电子科学研究院学报

影响因子:0.663
ISSN:1673-5692
年,卷(期):2024.19(7)