首页|基于多路混合注意力机制的水下图像增强网络

基于多路混合注意力机制的水下图像增强网络

扫码查看
光线在水下被吸收或者散射使得水下图像成像出现色偏、模糊遮挡等问题,影响水下视觉任务.传统的图像增强方法分别采用直方图均衡、伽马矫正和白平衡方法较好地增强水下图像.然而,3种方法融合增强水下图像的互补性和相关性方面的研究较少.因此,该文提出一种基于多路混合注意力机制的水下图像增强网络.首先,提出多路特征提取模块,对图像进行直方图均衡支路、伽马矫正支路和白平衡支路的多路特征提取,提取图像的对比度、亮度和颜色特征;然后,融合直方图均衡、伽马矫正和白平衡3支路特征,增强3支路特征融合的互补性;最后,设计混合注意力学习模块,深度挖掘3支路在对比度、亮度和颜色的相关性矩阵,并引入跳跃连接增强图像输出.在多个数据集上的实验结果表明,该方法能够有效恢复水下图像色偏、模糊遮挡和提高图像明亮度.
Underwater Image Enhancement Network Based on Multi-channel Hybrid Attention Mechanism
The absorption or scattering of light under water causes problems such as color cast,blur and occlusion in underwater image imaging,which affects underwater vision tasks.Traditional image enhancement methods use histogram equalization,gamma correction and white balance methods to enhance underwater images well.However,there are few studies on the complementarity and correlation of the three methods fused to enhance underwater images.Therefore,an underwater image enhancement network based on multi-channel hybrid attention mechanism is proposed.Firstly,a multi-channel feature extraction module is proposed to extract the contrast,brightness and color features of the image by multi-channel feature extraction of histogram equalization branch,gamma correction branch and white balance branch.Then,the three branch features of histogram equalization,gamma correction and white balance are fused to enhance the complementarity of three branch feature fusion.Finally,a hybrid attention learning module is designed to deeply mine the correlation matrix of the three branches in contrast,brightness and color,and skip connections are introduced to enhance the image output.Experimental results on multiple datasets show that the proposed method can effectively recover the color cast,blur occlusion and improve the brightness of underwater images.

Underwater image enhancementDeep learningAttention mechanismSkip connection

李云、孙山林、黄晴、井佩光

展开 >

广西财经学院大数据与人工智能学院 南宁 530003

桂林航天工业学院电子信息与自动化学院 桂林 541000

桂林电子科技大学信息与通信学院 桂林 541000

天津大学电气自动化与信息工程学院 天津 300072

展开 >

水下图像增强 深度学习 注意力机制 跳跃连接

国家自然科学基金博士启动基金

61861014BS2021025

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(1)
  • 2
  • 4