首页|边缘计算网络中区块链赋能的异步联邦学习算法

边缘计算网络中区块链赋能的异步联邦学习算法

扫码查看
由于数据量激增而引起的信息爆炸使得传统集中式云计算不堪重负,边缘计算网络(ECN)被提出以减轻云服务器的负担.此外,在ECN中启用联邦学习(FL),可以实现数据本地化处理,从而有效解决协同学习中边缘节点(ENs)的数据安全问题.然而在传统FL架构中,中央服务器容易受到单点攻击,导致系统性能下降,甚至任务失败.本文在ECN场景下,提出基于区块链技术的异步FL算法(AFLChain),该算法基于ENs算力动态分配训练任务,以提高学习效率.此外,基于ENs算力、模型训练进度以及历史信誉值,引入熵权信誉机制评估ENs积极性并对其分级,淘汰低质EN以进一步提高AFLChain的性能.最后,提出基于次梯度的最优资源分配(SORA)算法,通过联合优化传输功率和计算资源分配以最小化整体网络延迟.仿真结果展示了AFLChain的模型训练效率以及SORA算法的收敛情况,证明了所提算法的有效性.
Asynchronous Federated Learning via Blockchain in Edge Computing Networks
Because of the information explosion caused by the surge of data,traditional centralized cloud computing is overwhelmed,Edge Computing Network(ECN)is proposed to alleviate the burden on cloud servers.In contrast,by permitting Federated Learning(FL)in the ECN,data localization processing could be realized to successfully address the data security problem of Edge Nodes(ENs)in collaborative learning.However,traditional FL exposes the central server to single-point attacks,resulting in system performance degradation or even task failure.In this paper,we propose Asynchronous Federated Learning based on Blockchain technology(AFLChain)in the ECN that can dynamically assign learning tasks to ENs based on their computing capabilities to boost learning efficiency.In addition,based on the computing capability of ENs,model training progress and historical reputation,the entropy weight reputation mechanism is implemented to assess and rank the enthusiasm of ENs,eliminating low quality ENs to further improve the performance of the AFLChain.Finally,the Subgradient based Optimal Resource Allocation(SORA)algorithm is proposed to reduce network latency by optimizing transmission power and computing resource allocation simultaneously.The simulation results demonstrate the model training efficiency of the AFLChain and the convergence of the SORA algorithm and the efficacy of the proposed algorithms.

Asynchronous federated learningBlockchainResource allocationEdge Computing Network(ECN)

黄晓舸、邓雪松、陈前斌、张杰

展开 >

重庆邮电大学通信与信息工程学院 重庆 400065

异步联邦学习 区块链 资源分配 边缘计算网络

国家自然科学基金重庆市科委重庆市基础研究与前沿探索项目

61831002cstc2018jcyjAx0383

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(1)
  • 15