首页|双鉴别器盲超分重建方法研究

双鉴别器盲超分重建方法研究

扫码查看
图像超分变率重建方法在公共安全检测、卫星成像、医学和照片恢复等方面有着十分重要的用途.该文对基于生成对抗网络的超分辨率重建方法进行研究,提出一种基于纯合成数据训练的真实世界盲超分算法(Real-ESRGAN)的UNet3+双鉴别器Real-ESRGAN方法(Double Unet3+ Real-ESRGAN,DU3-Real-ESRGAN).首先,在鉴别器中引入UNet3+结构,从全尺度捕捉细粒度的细节和粗粒度的语义.其次,采用双鉴别器结构,一个鉴别器学习图像纹理细节,另一个鉴别器关注图像边缘,实现图像信息互补.在Set5,Set14,BSD100和Urban100数据集上,与多种基于生成对抗网络的超分重建方法相比,除Set5数据集外,DU3-Real-ESRGAN方法在峰值信噪比(PSNR)、结构相似性(SSIM)和无参图像考评价指标(NIQE)都优于其他方法,产生了更直观逼真的高分辨率图像.
Research on Blind Super-resolution Reconstruction with Double Discriminator
Image super-resolution reconstruction methods have very important uses in public safety detection,satellite imaging,medicine and photo restoration.In this paper,super-resolution reconstruction methods based on generative adversarial networks are investigated,from the training Real-world blind Enhanced Super-Resolution Generative Adversarial Networks pure synthetic data(Real-ESRGAN)method,a double UNet3+ discriminators Real-ESRGAN(DU3-Real-ESRGAN)method is proposed.Firstly,a UNet3+ structure is introduced in the discriminator to capture fine-grained details and coarse-grained semantics from the full scale.Secondly,a dual discriminator structure is adopted,with one discriminator learning image texture details and the other focusing on image edges to achieve complementary image information.Compared with several methods based on generative adversarial networks on Set5,Set14,BSD100 and Urban100 data sets,except for Set5,the Peak Signal to Noise Ration(PSNR),Structure SIMilarity(SSIM)and Natural Image Quality Evaluator(NIQE)values of the DU3-Real-ESRGAN method are superior to those of other methods to produce more intuitive and realistic high-resolution images.

Image super-resolution reconstructionReal-world blind Enhanced Super-Resolution Generative Adversarial Networks(Real-ESRGAN)UNet3+Dual discriminators

卢迪、于国梁

展开 >

哈尔滨理工大学 哈尔滨 150080

超分辨率重建 纯合成数据训练的真实世界盲超分算法 UNet3+ 双鉴别器

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(1)
  • 1