首页|PPNet:基于预先预测的降雨短时预测模型

PPNet:基于预先预测的降雨短时预测模型

扫码查看
降雨短时预测一直以来都是气象预测问题中的热点问题.传统的预测方法基于数值天气预测模型展开预报,但近些年利用深度学习展开基于雷达回波图的降雨短时预测方法受到了广大研究者的关注.其中,时序预测网络存在不能并行计算导致耗时过长的问题且存在梯度爆炸问题.全卷积网络可以解决上述两个问题,但是却不具备时序信息提取的能力.因此,该文以泰勒冻结假设为理论依据,提出一个基于预先预测辅助推断结构的2维全卷积网络(PPNet).网络先行提取粗粒度时序信息与空间信息,然后利用全卷积结构细化特征粒度,有效缓解2维卷积网络不能提取时序信息的缺陷.此外,该文还提供一种时序特征约束器对预先预测特征进行时间维度的特征约束,使预测特征更倾向于真实特征.消融实验证明所提预先预测辅助推断结构和时序特征约束器具有优秀的时序特征能力,可以提升网络对时序信息的敏感度.与目前最好的降雨预测算法或视频预测算法相比,该文网络均取得较好结果,特别在暴雨指标上达到最优.
PPNet: A Precipitation Nowcasting Model Based on Pre-Prediction
Precipitation nowcasting has always been a hot research topic in weather forecasting. Traditional forecasting methods are based on numerical weather prediction. But recently the radar extrapolation-based methods using deep learning have attracted many researchers' attentions. Among them, the temporal prediction network cannot be calculated in parallel, which causes it to take too long time and has the problem of gradient explosion. The fully convolutional networks can solve the above two problems, but it does not have the ability to extract temporal information. Therefore, based on Taylor frozen hypothesis, a 2D fully convolutional Pre-predicted Precipitation nowcasting Network (PPNet) with a pre-prediction auxiliary inference structure is proposed. The network firstly extracts coarse-grained temporal and spatial information, and then uses the fully convolution structure to refine the feature granularity thereby effectively remitting the drawback that 2-D convolutional networks cannot extract temporal information. In addition, the paper provides a temporal features constraint structure to constrain the pre-predicted features and the structure makes the extracted features more realistic.The ablation experiments prove that the proposed pre-prediction auxiliary inference structure and temporal features constraint structure have excellent ability to extract temporal features and improve the sensitivity of the network to temporal features. Compared with the current best rainfall prediction algorithms and video prediction algorithms, the paper's network achieves better prediction results, especially in the rainstorm area.

Precipitation nowcastingFully convolutionPre-predictionTaylor frozen hypothesisFeature constraints

宋毅、张晗奕、孙丰、张敬林、白琮

展开 >

航天宏图信息技术股份有限公司 北京 100195

浙江工业大学计算机与科学技术学院 杭州 310023

山东大学控制科学与工程学院 济南 250100

降雨短时预测 全卷积 预先预测 泰勒冻结 特征约束

浙江省自然科学基金山东省基础研发计划江苏省重点研发计划

LR21F020002ZR2022ZD32BE2021093

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(2)
  • 24