3D Trajectory and Power Optimization Method Based on Full Spectrum Sharing
Due to the extreme shortage of licensed spectrum in cellular systems currently, unlicensed spectrum is thus recommended for cellular systems. The Unmanned Aerial Vehicle(UAV) flight trajectory and power control have a significant impact on spectrum utilization efficiency. However, Three-Dimensional(3D) flight trajectory and power optimization methods based on full spectrum sharing have rarely been unstudied. Therefore, a full spectrum sharing method is first proposed in this paper, where the UAV can use the unlicensed spectrum by controlling the transmission power of uplink cellular users and Device to Device (D2D) users without affecting the data transmission of WiFi devices; at the same time, the UAV can use the licensed spectrum without affecting other downlink cellular users. And then, based on the proposed full spectrum sharing method, a joint optimization problem of 3D flight trajectory and transmission power is constructed under the energy constraint of the UAV battery. In order to solve the proposed complex non-convex optimization problem with multi-variable coupling, the successive convex approximation technique and block coordinate descent method are used to transform the original problem into two convex optimization subproblems i.e. 3D trajectory optimization and power control and solve them iteratively. A large of simulation results show that the proposed spectrum sharing method based on 3D trajectory and power optimization significantly improves the spectrum utilization efficiency.
Full spectrum sharingUnmanned Aerial Vehicle (UAV) CommunicationDevice to Device (D2D)3D trajectoryPower control