首页|基于深度学习的下行大规模MIMO OFDM系统的1比特预编码算法

基于深度学习的下行大规模MIMO OFDM系统的1比特预编码算法

扫码查看
大规模多输入多输出(MIMO)系统中通过在基站端配备数百根天线,在提高频谱利用效率的同时,也带来了系统成本的增加.本课题组之前提出了一种适用于下行大规模MIMO正交频分复用(OFDM)系统的收敛保证的多载波1比特预编码算法(CG-MC1bit),能够获得较优的系统性能,但相应的计算复杂度较高,阻碍了其在实时系统中的应用.为进一步解决大规模MIMO系统中的成本和功耗问题,该文提出了一个模型驱动的神经网络,在CG-MC1bit算法的基础上迭代展开(Unfolding)得到了一种更加高效的CG-MC1bit-Net算法.具体而言,将迭代算法展开为一个神经网络,并引入可训练的参数来替代前向传播中的高复杂性操作.实验结果表明,该方法能够自动更新参数,与传统的预编码算法相比,收敛速度更快,计算复杂度更低.
1-bit Precoding Algorithm for Massive MIMO OFDM Downlink Systems with Deep Learning
The base station of a massive Multiple-Input Multiple-Output (MIMO) system is equipped with hundreds of antennas, enhancing the spectral efficiency of the system and increasing the system costs. To address this problem, our research group proposed a Convergence-Guaranteed Multi-Carrier one-bit precoding (CG-MC1bit) iterative algorithm suitable for Orthogonal Frequency-Division Multiplexing (OFDM) downlink massive MIMO systems, which can ensure superior system performance. However, the corresponding computational complexity is high, hindering the practical application of the algorithm in real-time systems. To address this issue, we propose a model-driven, unfolding neural network, which is based on the CG-MC1bit iterative algorithm and introduces trainable parameters to replace high-complexity operations in forward propagation. In particular, we unfold the iterative algorithm into a neural network and introduce trainable parameters to replace high-complexity operations in forward propagation. Simulation results reveal that this method can automatically update parameters. In addition, compared with the traditional precoding algorithms, the proposed method has a higher convergence speed and lower computational complexity.

Massive MIMOPrecodingOrthogonal Frequency-Division Multiplexing(OFDM)UnfoldingNeural Network

周宸颢、温利嫄、钱骅、康凯

展开 >

中国科学院上海高等研究院 上海 201210

中国科学院大学 北京 100049

上海科技大学信息科学与技术学院 上海 201210

大规模多输入多输出 预编码 正交频分复用(OFDM) 迭代展开 神经网络

国家重点基础研究发展计划(973计划)国家自然科学基金

2020YFB220560361971286

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(3)
  • 22