首页|考虑信息年龄的无人机辅助智能交通系统计算卸载优化

考虑信息年龄的无人机辅助智能交通系统计算卸载优化

扫码查看
该文考虑无人机(UAV)交通监测与移动边缘计算(MEC)技术结合的智能交通系统.为了保障系统中数据时效性并且降低系统能耗,提出计及信息年龄(AoI)的UAV计算卸载优化方法.首先,建立UAV辅助的MEC系统模型,允许MEC服务器缓存常用的应用程序并为UAV提供计算卸载,以支持UAV执行交通监测任务.通过联合优化UAV任务卸载决策、UAV上下行通信带宽分配以及被卸载任务的计算资源分配,最小化所有UAV与MEC服务器的总能耗,同时满足AoI与资源容量等约束条件.其次,系统能耗最小化问题是混合整数非凸优化问题,因此采用离散化和线性化手段,快速获得问题的近似最优解,并设计离散点生成算法来调节近似误差.最后,仿真结果表明,即使对于大型的非凸问题,所提方法也能够快速得到近似最优解,并且可以在不同的任务场景中满足AoI等约束条件,最大限度降低系统能耗.仿真结果验证了所提方法的有效性.
Optimization of Computation Offloading for UAV-Assisted Intelligent Transportation Systems Considering Age of Information
The intelligent transportation system that combines Unmanned Aerial Vehicle (UAV) based traffic monitoring and Mobile Edge Computing (MEC) technologies is considered. In order to ensure the timeliness of data and reduce energy consumption in the system, a UAV computation offloading optimization method considering Age of Information (AoI) is proposed. Firstly, the UAV-assisted MEC system model is established to allow the MEC server to cache commonly used applications and provide UAVs with computation offloading, which supports the UAVs to perform traffic monitoring tasks. By jointly optimizing UAV task offloading decisions, UAV uplink and downlink communication bandwidth allocation, and computing resource allocation of offloaded tasks, the total energy consumption of all UAVs and the MEC server is minimized while satisfying constraints of AoI and resource capacities. Secondly, the system energy consumption minimizing problem is a mixed-integer non-convex optimization problem. Discretization and linearization methods are adopted to quickly obtain an approximately optimal solution to the problem. A discrete point generation algorithm is designed to adjust the approximation error. Finally, simulation results show that even for large non-convex problems, the proposed method can quickly obtain approximately optimal solutions and can satisfy constraints of AoI in different task scenarios, minimizing the system energy consumption as much as possible. The simulation results verify the effectiveness of the proposed method.

Mobile Edge Computing (MEC)Intelligent transportation systemUnmanned Aerial Vehicle(UAV)Age of Information (AoI)Energy consumption optimization

钟伟锋、黄旭民、康嘉文、谢胜利

展开 >

广东工业大学自动化学院 广州 510006

移动边缘计算 智能交通系统 无人机 信息年龄 能耗优化

国家自然科学基金国家自然科学基金国家自然科学基金广州市基础与应用基础研究项目广州市基础与应用基础研究项目广州市基础与应用基础研究项目

6200309962001125621020992023A04J17042023A04J03402023A04J1699

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(3)
  • 25