High-precision Gesture Recognition Based on DenseNet and Convolutional Block Attention Module
Non-contact gesture recognition is a new type of human-computer interaction method with broad application prospects. It can be used in Augmented Reality (AR)/Virtual Reality (VR), smart homes, smart medical, etc., and has recently become a research hotspot. Motivated by the need for more precise micro-motion gesture recognition using mm-wave radar in recent years, a novel micro-motion gesture recognition method based on MIMO millimeter wave radar is proposed in this paper. The MilliMeter Wave CAScaded (MMWCAS) radar cascaded with four AWR1243 radar boards is used to collect gesture echoes. Time-frequency analysis is performed on gesture echoes, and the hand target is detected based on the Range-Doppler (RD) map and 3D point cloud. Through data pre-processing, the Range-Time Map (RTM), Doppler-Time Map (DTM), Azimuth-Time Map (ATM) and Elevation-Time Map (ETM) of the gestures are extracted to more comprehensively characterize the motion of the hand gesture. The mixed Feature-Time Maps (FTM) are formed and adopted for the recognition of 12 types of micro-motion gestures. An innovative gesture recognition network based on DenseNet and Convolutional Block Attention Module (CBAM) is designed, and the mixed FTM is used as the input of the network. Experimental results show that the recognition accuracy reaches 99.03%, achieving high-accuracy gesture recognition. It is discovered that the network focuses on the first half of the gesture movement, which improves the recognition accuracy.