首页|基于任务感知关系网络的少样本图像分类

基于任务感知关系网络的少样本图像分类

扫码查看
针对关系网络(RN)模型缺乏对分类任务整体相关信息的感知能力的问题,该文提出基于任务感知关系网络(TARN)的小样本学习(FSL)算法.引入模糊C均值(FCM)聚类生成基于任务全局分布的类别原型,同时设计任务相关注意力机制(TCA),改进RN中的1对1度量方式,使得在与类别原型对比时,局部特征聚合了任务全局信息.和RN比,在数据集Mini-ImageNet上,5-way 1-shot和5-way 5-shot设置中的分类准确率分别提高了8.15%和7.0%,在数据集Tiered-ImageNet上,5-way 1-shot和5-way 5-shot设置中的分类准确率分别提高了7.81%和6.7%.与位置感知的关系网络模型比,在数据集Mini-ImageNet上,5-way 1-shot设置中分类准确率也提高了1.24%.与其他小样本图像分类算法性能比较,TARN模型在两个数据集上都获得了最佳的识别精度.该方法将任务相关信息和度量网络模型进行结合可以有效提高小样本图像分类准确率.
Few-shot Image Classification Based on Task-Aware Relation Network
Considering that Relation Network (RN) ignores the global task correlation information, a Few-Shot Learning(FSL)method based on a Task-Aware Relation Network (TARN) for fully using global task correlation information is proposed in this paper. Method class prototype based on global task relationship is created using the Fuzzy C-Mean (FCM) clustering algorithm, and a Task Correlation Attention mechanism (TCA) is designed to improve the one-vs-one evaluation metric in RN for fusing the global task relationship into features. Compared with RN, in the Mini-ImageNet dataset, the classification accuracy of 5-way 1-shot and 5-way 5-shot settings is increased by 8.15% and 7.0% respectively. While in the Tiered-ImageNet dataset, the classification accuracy of 5-way 1-shot and 5-way 5-shot settings is increased by 7.81 and 6.7% respectively. Compared with the position-awareness relation network, in Mini-ImageNet, the classification accuracy of 5-way 1-shot settings is still increased by 1.24%. Compared with other few-shot image classification methods, TARN also achieves the best performance in these two datasets. The combination of the relation network and task correlation can effectively improve the few-shot image classification accuracy.

Few-Shot Learning (FSL)Image classificationMetric learningTask-awareRelation Network(RN)

郭礼华、王广飞

展开 >

华南理工大学电子与信息学院 广州 510641

小样本学习 图像分类 度量学习 任务感知 关系网络

广东省基础与应用基础研究基金广东省基础与应用基础研究基金

2022A15150115492023A1515011104

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(3)
  • 21