首页|基于深层特征差异性网络的图像超分辨率算法

基于深层特征差异性网络的图像超分辨率算法

扫码查看
传统深层神经网络通常以跳跃连接等方式堆叠深层特征,这种方式容易造成信息冗余.为了提高深层特征信息的利用率,该文提出一种深层特征差异性网络(DFDN),并将其应用于单幅图像超分辨率重建.首先,提出相互投影融合模块(MPFB)提取多尺度深层特征差异性信息并融合,以减少网络传输中上下文信息的损失.第二,提出了差异性特征注意力机制,在扩大网络感受野的同时进一步学习深层特征的差异.第三,以递归的形式连接各模块,增加网络的深度,实现特征复用.将DIV2K数据集作为训练数据集,用4个超分辨率基准数据集对预训练的模型进行测试,并通过与流行算法比较重建的图像获得结果.广泛的实验表明,与现有算法相比,所提算法可以学习到更丰富的纹理信息,并且在主观视觉效果和量化评价指标上都取得最好的排名,再次证明了其鲁棒性和优越性.
Image Super-Resolution Algorithms Based on Deep Feature Differentiation Network
Traditional deep neural networks usually stack deep features in a way such as skip connection, which is easy to cause information redundancy. To improve the utilization of deep feature information, a Deep Feature Differentiation Network (DFDN) is proposed and applied to single image super-resolution. First, multi-scale deep feature differentiation information is extracted and fused by Mutual-Projected Fusion Block (MPFB) to reduce the contextual information loss. Second, a differential feature attention module is proposed to further learn the differences of deep features while expanding the perception field. Third, the modules are connected in a recursive form to increase the network depth and realize feature reuse. The DIV2K dataset is used as the training dataset, and the pre-trained model is tested with four benchmark datasets, and the results are obtained by comparing the reconstructed images with popular algorithms. Extensive experiments show that the algorithm proposed in this study learns richer texture information than existing algorithms and achieves the best rankings in both subjective visualization and quantitative evaluation metrics, which again proves its robustness and superiority.

Super resolutionDeep featureFeature fusionConvolution neural networkDifferentiation

程德强、袁航、钱建生、寇旗旗、江鹤

展开 >

中国矿业大学信息与控制工程学院 徐州 221116

中国矿业大学计算机科学与技术学院 徐州 221116

超分辨率 深层特征 特征融合 卷积神经网络 差异性

国家自然科学基金国家自然科学基金中央高校基本科研业务费专项

52204177523041822020QN49

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(3)
  • 31