首页|基于高分辨率类激活映射算法的弱监督目标实时检测

基于高分辨率类激活映射算法的弱监督目标实时检测

扫码查看
受益于深度学习的发展,目标检测技术在各类视觉任务中得到广泛关注.然而,获取目标的边框标注需要高昂的时间和人工成本,阻碍了目标检测技术在实际场景中的应用.为此,该文在仅使用图像类别标签的基础上,提出一种基于高分辨率类激活映射算法的弱监督目标实时检测方法,降低网络对目标实例标注的依赖.该方法将目标检测细划分为弱监督目标定位和目标实时检测两个子任务.在弱监督定位任务中,该文利用对比层级相关性传播理论设计了一种新颖的高分辨率类激活映射算法(HR-CAM),用于获取高质量目标类激活图,生成目标伪检测标注框.在实时检测任务中,该文选取单镜头多盒检测器(SSD)作为目标检测网络,并基于类激活图设计目标感知损失函数(OA-Loss),与目标伪检测标注框共同监督SSD网络的训练过程,提高网络对目标的检测性能.实验结果表明,该文方法在CUB200和TJAB52数据集上实现了对目标准确高效的检测,验证了该文方法的有效性和优越性.
Weakly Supervised Object Real-time Detection Based on High-resolution Class Activation Mapping Algorithm
Thanks to the development of deep learning technology, object detection techniques have gained wide attention in various vision tasks. However, obtaining bounding box annotations for objects requires high time and labor costs, which hinders the application of object detection technology in practical scenarios. Therefore, a weakly supervised real-time object detection method based on high resolution class activation mapping algorithm is proposed, using only image class labels to reduce the dependence of network on object instance labels. It subdivides object detection into two subtasks: weakly supervised object localization and real-time object detection. In weakly supervised object localization task, a novel High Resolution Class Activation Mapping(HR-CAM) algorithm based on contrastive layer-wise relevance propagation theory is designed. It can obtain high quality class activation maps and generate pseudo detection annotation box. In real-time detection task, Single Shot multibox Detector(SSD) network as object detector is selected and an Object-Aware Loss function(OA-Loss) based on the class activation maps is designed. It can jointly supervise the training process of the SSD network with generated pseudo detection annotation box, to improve the networks' detection performance for objects. The experimental results show that the method proposed in this paper can achieve accurate and efficient object detection on the CUB200 and TJAB52 datasets, verifying the effectiveness and superiority of this method.

Weakly supervised localizationObject detectionContrastive layer-wise relevance propagation theoryClass Activation Mapping(CAM) algorithmObject-Aware Loss function(OA-Loss)

孙辉、史玉龙、张健一、王蕊、王羽玥

展开 >

中国民航大学电子信息与自动化学院 天津 300300

南开大学人工智能学院 天津 300350

天津滨海国际机场有限公司 天津 300399

弱监督定位 目标检测 对比层级相关性传播理论 类激活映射算法 目标感知损失函数

天津市自然科学基金

18JCYBJC42300

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(3)
  • 32