首页|基于多尺度分区有向时空图的步态情绪识别

基于多尺度分区有向时空图的步态情绪识别

扫码查看
为了有效获取节点之间在多尺度、远距离以及在时间和空间位置上的依赖关系,以提高对步态情绪识别精度,本文首先提出一种构建分区有向时空图的方法:使用所有帧节点进行构图,然后按区域有向连接.其次,提出一种多尺度分区聚合与分区融合的方法.通过图深度学习对图节点进行更新.并对相似节点特征进行融合.最后,提出一个多尺度分区有向自适应时空图卷积神经网络(MPDAST-GCN)方法.网络通过在时间维度上构建图,获取远距离帧节点特征,并自适应地学习每帧上的特征数据.MPDAST-GCN将输入数据分类成高兴、伤心、愤怒和平常4种情绪类型.并在发布的Emotion-Gait数据集上,相比于目前最先进的方法实现6%的精度提升.
Gait Emotion Recognition Based on a Multi-scale Partitioning Directed Spatio-temporal Graph
To enhance the precision of gait emotion recognition by effectively capturing the dependencies between nodes at multiple scales, long distances, and temporal and spatial positions, a novel method comprising three parts is proposed in this paper. Firstly, a partitioned directed spatio-temporal graph construction method is proposed. It connects all frame nodes in a directed manner based on their regions. Secondly, a multi-scale partition aggregation and fusion method is proposed. This method updates the graph nodes using graph deep learning and fuses similar node features. Lastly, a Multi-scale Partition Directed Adaptive Spatio-Temporal Graph Convolutional Neural network (MPDAST-GCN) is proposed. It constructs a graph in the temporal dimension to obtain the features of distant frame nodes and learns the feature data adaptively on each frame. The MPDAST-GCN classifies input data into four emotion types: happy, sad, angry, and normal. Experimental results on the Emotion-Gait dataset demonstrate that the proposed method outperforms state-of-the-art methods by 6% in terms of accuracy.

Gait emotion recognitionEmotion recognitionGraph deep learning

张家波、高洁、黄钟玉、徐光辉

展开 >

重庆邮电大学通信与信息工程学院 重庆 400065

步态情绪识别 情绪识别 图深度学习

国家自然科学基金重庆市自然科学基金

61702066cstc2019jcyjmsxmX0681

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(3)
  • 25