Human Activities Recognition Based on Two-stream NonLocal Spatial Temporal Residual Convolution Neural Network
Three-Dimensional Convolution Neural Network (3D CNN) and two-stream Convolution Neural Network (two-stream CNN) are commonly-used for human activities recognition, and each has its own advantages. A human activities recognition model with low complexity and high recognition accuracy is proposed by combining the two architectures. Specifically, a Two-stream NonLocal Spatial Temporal Residual Convolution Neural Network based onchannel Pruning (TPNLST-ResCNN) is proposed in this paper. And Spatial Temporal Residual Convolution Neural Networks (ST-ResCNN) are used both in the temporal stream subnetwork and the spatial stream subnetwork. The final recognition results are acquired by fusing the recognition results of the two subnetworks under a mean fusion algorithm. Furthermore, in order to reduce the complexity of the network, a channel pruning scheme for ST-ResCNN is presented to achieve model compression. In order to enable the compressed network to learn the long-distance spatiotemporal dependencies of human activity changes better and improve the recognition accuracy of the network, a nonlocal block is introduced before the first residual spatial temporal convolution block of the pruned network. The experimental results show that the recognition accuracies of the proposed human activity recognition model are 98.33% and 74.63% on the public dataset UCF101 and HMDB51, respectively. Compared with the existed algorithms, the proposed model in this paper has fewer parameters and higher recognition accuracy.