Dynamic Quantum Secret Sharing Scheme Based on Nonlocal Orthogonal Product States
Current Quantum Secret Sharing(QSS) has the drawbacks of high consumption of resource preparation and the security is not stronger. To overcome the above drawbacks, a verifiable quantum secret sharing scheme based on orthogonal product states is proposed, where multiple participants can dynamically join or leave the secret sharing. In the proposed scheme, the particle pairs of product states are divided into two sequences, the first sequence is transmitted among participants, and the previous participant performs the unitary operator to aggregate the shares on it and then transmits it to the next participant; for the other sequence, the last participant(verifier) performs the Oracle operator on the received particles. Afterward, the verifier uses global measurements on the particle pairs to obtain the quadratic residues of the secrets. Finally, learning from the idea of non-single mapping between ciphertext and plaintext in Rabin cipher, the verifier jointly with Alice verifies the correctness of the measurement results and identifies the secrets from the results. Security analysis shows that the proposed scheme can resist common external and internal attacks, and that the verification process is strongly secure. Since the nonlocal orthogonal product states are transmitted separately in two sequences, the security of the secret reconstruction process is enhanced. Performance analysis shows that the proposed scheme has low quantum resource consumption using orthogonal product state as information carriers,and extends the dimension of orthogonal product basis from low dimension to d dimension, and the number of participants can be dynamically increased or decreased, so it provides better flexibility and generality.
Quantum Secret Sharing(QSS)Orthogonal product stateDynamic join or leaveRabin cipher