Dynamic Characteristics of Fractional-order Photosensitive Neuron and Its Coupling Synchronization
Neurons are the basic unit of the nervous system, and the accuracy of neuron models affects the analysis and understanding of their essential properties. In this paper, a fractional-order photosensitive FitzHugh-Nagumo (FHN) neuron circuit constructed by fractional-order capacitor and inductor is investigated. The dynamics of the fractional-order photosensitive neuron model are analyzed using bifurcation diagrams, phase portraits, and time series diagrams. It was found that the activity of the fractional-order photosensitive neuron increased as the fractional-order decreased. When different system parameters are selected, the neuron system transitions between periodic and chaotic discharge states. The system can induce different discharge modes, such as periodic discharge states, chaotic discharge states, and spike discharge states. In addition, two fractional-order photosensitive neurons were connected using electrical synaptic coupling. Phase synchronization and complete synchronization between the fractional-order photosensitive neuron systems can be achieved by adjusting the coupling strength. Finally, the modulation effect of an external light signal on neuronal excitability was verified by dSPACE.