首页|DroneRFa:用于侦测低空无人机的大规模无人机射频信号数据集

DroneRFa:用于侦测低空无人机的大规模无人机射频信号数据集

扫码查看
为研究与发展反无人机检测识别技术,该文公开了一个名为DroneRFa的大规模无人机射频信号数据集.该数据集使用软件无线电设备探测无人机与遥控器相互通信的射频信号,包含城市户外场景下运动无人机信号9类、城市室内场景下信号15类以及背景参照信号1类.每类数据有不少于12个片段,每个片段包含1亿个以上的采样点.数据采集覆盖了3个ISM无线电频段,记录无人机多频通信的真实活动.该数据集具有详细的无人机户外飞行距离和工作频段标注,以前缀字符结合二进制编码的形式方便用户灵活访问所需数据.此外,该文提供了基于频谱可视统计特征和基于深度学习表征的两种无人机识别方案,以验证数据集的可靠和有效性.
DroneRFa: A Large-scale Dataset of Drone Radio Frequency Signals for Detecting Low-altitude Drones
A large-scale dataset of drone radio frequency signals, namely DroneRFa, is constructed to research and develop anti-drone detection and recognition technologies. This dataset uses a software-defined radio device to monitor communication signals between drones and their controllers, including 9 types of flying drone signals in an outdoor environment, 15 types of drone signals in an indoor environment, and 1 type of background signal as a reference. Each type of data has no less than 12 segments, each containing more than 100 million sampling points. The data acquisition covered three Industrial Scientific Medical (ISM) radio bands, and recorded the multifrequency communication activity of drones. The dataset has detailed flying distance and communication frequency band labeling, which are represented with prefix characters and binary codes to facilitate easy access to specific data required by users. Furthermore, this paper proposes two drone identification schemes based on spectral and visual statistical features and deep learning representation to verify the reliability and validity of the dataset.

Artificial intelligenceAnti-drone detectionSpectrum learningSignal identification

俞宁宁、毛盛健、周成伟、孙国威、史治国、陈积明

展开 >

浙江大学,浙江省协同感知与自主无人系统重点实验室 杭州 310027

河北省承德市公安局 承德 067000

浙江大学控制科学与工程学院 杭州 310027

人工智能 反无人机检测 频谱学习 信号识别

国家自然科学基金国家自然科学基金国家自然科学基金浙江省自然科学基金中央高校基本科研业务费专项浙江大学教育基金会启真人才基金杭州未来科技城5G开放实验室项目

U21A204566227144461901413LZ23F010007226-2022-00107

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(4)