Robust Power Allocation for Multi-LED Integrated Visible Light Positioning and Communication
In order to integrate signals of the Visible Light Positioning (VLP) and Visible Light Communication(VLC), a Frequency Division Multiplexing (FDM) based signal structure and a robust power allocation scheme for the multi-LED integrated Visible Light Position and Communication (VLPC) system are proposed. Firstly, an FDM-based VLPC signal structure is designed to carry two signals simultaneously with independent spectrum resource allocation, which can reduce transmission delay and improve real-time positioning. Then, the channel estimation based on positioning results is investigated, and the coupling relationship and statistical feature between the channel estimation error and positioning error are revealed. Furthermore, a VLPC robust power allocation problem is proposed to minimize the Cramér-Rao Lower Bound(CRLB) of the VLP under the power constraints and outage chance constraint of the communication rate. This nonconvex problem is transformed into a series of iterative convex semidefinite programming subproblems through semidefinite relaxation, worst-case conditional value-at-risk, and successive convex approximation. Finally, from the simulation results, it is verified that the proposed scheme can simultaneously achieve robust communication and effective positioning. The robust achievable rate exceeds 350 Mbit/s, and the centimeter-level positioning can still be achieved when the minimum rate requirement is 200 Mbit/s, and the maximum tolerable outage probability is 0.01.
Visible Light Positioning(VLP)Visible Light Communication(VLC)Robust power allocation