A Placement Planning Scheme of Intelligent-Reflecting-Surface for In-door Deployment
The Intelligent-Reflecting-Surface (IRS) / Reconfigurable-Intelligent-Surface (RIS) is challenged by the placement and direction of its adhering panel when it is used to assist an actual wireless communication system to improve performance. As a mathematic programming problem, RIS placement not only depends on objective design but also is subjective to the distribution of buildings surrounded and the effective reflection area of walls to be hung with the RIS. The in-door deployment of a planar RIS is much more complex than the out-door counterpart in free and open space. The focus of this paper is on the in-door deployment of RIS adhering to environmental walls. A multi-terminal access optimization is modelled by site planning and a simplified equivalent expression is presented. A degenerated case for a single terminal is analyzed in order to transform the non-linear problem to be tractable. The function of Cassini oval is deduced from the objective and feasible solutions are narrowed to the common projection area of terminals and base-state. A heuristic and efficient algorithm is then developed based on a binary searching scheme. Numerical simulations by two in-door cases with complex constructions have verified that the proposed algorithm is benefit to speed-up computing, and extensible for multiple-RIS network planning.