首页|数字孪生辅助联邦学习中的边缘选择和资源分配联合优化

数字孪生辅助联邦学习中的边缘选择和资源分配联合优化

扫码查看
在基于联邦学习的智能驾驶中,智能网联汽车(ICV)的资源限制和可能出现的设备故障会导致联邦学习训练精度下降、时延和能耗增加等问题.为此该文提出数字孪生辅助联邦学习中的边缘选择和资源分配优化方案.该方案首先提出数字孪生辅助联邦学习机制,使得ICV能够选择在本地或利用其数字孪生体参与联邦学习.其次,通过构建数字孪生辅助联邦学习的计算和通信模型,建立以最小化累积训练时延和能耗为目标的边缘选择和资源分配联合优化问题,并将其转化为部分可观测的马尔可夫决策过程.最后,提出基于多智能体参数化Q网络(MPDQN)的边缘选择和资源分配算法,用于学习近似最优的边缘选择和资源分配策略,以实现联邦学习累积时延和能耗最小化.仿真结果表明,所提算法在保证模型精度的同时,有效降低联邦学习累积训练时延和能耗.
Joint Optimization of Edge Selection and Resource Allocation in Digital Twin-assisted Federated Learning
In intelligent driving based on federated learning, the resource constraints of Intelligent Connected Vehicle (ICV) and possible device failures will lead to the decrease of the precision of federated learning training and the increase of delay and energy consumption. Therefore, an optimization scheme of edge selection and resource allocation in digital twin-assisted federated learning is proposed. Firstly, a digital twin-assisted federated learning mechanism is proposed, allowing ICV to choose to participate in federated learning locally or through its digital twin. Secondly, by constructing a computational and communication model for digital twin-assisted federated learning, an edge selection and computing resource allocation joint optimization problem is established with the objective of minimizing cumulative training delay and energy consumption, and is transformed into a partially observable Markov decision process. Finally, an edge selection and resource allocation algorithm based on Multi-agent Parametrized Deep Q-Networks (MPDQN) is proposed to learn approximately optimal edge selection and resource allocation strategies to minimize federated learning cumulative delay and energy consumption. Simulation results show that the proposed algorithm can effectively reduce cumulative training delay and energy consumption of federated learning training while ensuring model accuracy.

Intelligent drivingFederated learningDigital twinDeep reinforcement learning

唐伦、文明艳、单贞贞、陈前斌

展开 >

重庆邮电大学通信与信息工程学院 重庆 400065

移动通信技术重庆市重点实验室 重庆 400065

智能驾驶 联邦学习 数字孪生 深度强化学习

国家自然科学基金重庆市教委科学技术研究计划四川省科技计划

62071078KJZD-M2018006012021YFQ0053

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(4)