首页|长时视觉跟踪中基于双模板Siamese结构的目标漂移判定网络

长时视觉跟踪中基于双模板Siamese结构的目标漂移判定网络

扫码查看
在长时视觉跟踪中,大部分目标丢失判定方法需要人为确定阈值,而最优阈值的选取通常较为困难,造成长时跟踪算法的泛化能力较弱.为此,该文提出一种无需人为选取阈值的目标漂移判定网络(DNet).该网络采用Siamese结构,利用静态模板和动态模板共同判定跟踪结果是否丢失,其中,引入动态模板有效提高算法对目标外观变化的适应能力.为了对所提目标漂移判定网络进行训练,建立了样本丰富的数据集.为验证所提网络的有效性,将该网络与基础跟踪器和重检测模块相结合,构建了一个完整的长时跟踪算法.在UAV20L,LaSOT,VOT2018-LT和VOT2020-LT等经典的视觉跟踪数据集上进行了测试,实验结果表明,相比于基础跟踪器,在UAV20L数据集上,跟踪精度和成功率分别提升了10.4%和7.5%.
Target Drift Discriminative Network Based on Dual-template Siamese Structure in Long-term Tracking
In long-term visual tracking, most of the target loss discriminative methods require artificially determined thresholds, and the selection of optimal thresholds is usually difficult, resulting in weak generalization ability of long-term tracking algorithms. A target drift Discriminative Network (DNet) that does not require artificially selected thresholds is proposed. The network adopts Siamese structure and uses both static and dynamic templates to determine whether the tracking results are lost or not. Among them, the introduction of dynamic templates effectively improves the algorithm's ability to adapt to changes in target appearance. In order to train the proposed target drift discriminative network, a sample-rich dataset is established. To verify the effectiveness of the proposed network, a complete long-term tracking algorithm is constructed in this paper by combining this network with the base tracker and the re-detection module. It is tested on classical visual tracking datasets such as UAV20L, LaSOT, VOT2018-LT and VOT2020-LT. The experimental results show that compared with the base tracker, the tracking accuracy and success rate are improved by 10.4% and 7.5% on UAV20L dataset, respectively.

Long-term trackingDeep learningTarget drift Discriminative Network(DNet)Siamese structureDual template

侯志强、王卓、马素刚、赵佳鑫、余旺盛、范九伦

展开 >

西安邮电大学计算机学院 西安 710121

空军工程大学信息与导航学院 西安 710038

长时跟踪 深度学习 目标漂移判定网络 Siamese结构 双模板

国家自然科学基金陕西省自然科学基金

620723702023-JC-YB-598

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(4)