Hole Filling for Virtual View Synthesized Image by Combining with Contextual Feature Fusion
Due to the foreground occlusion of the reference texture and the difference in angle-of-views, many holes can be found in the synthesized images produced by depth image-based virtual view rendering. Prior disocclusion methods are time-consuming and need more texture consistency between hole-filled regions and the synthesized image. In this paper, depth maps are first pre-processed to reduce foreground penetration during hole filling. Then, for holes in the synthesized images after 3D warping, an image generation network based on the architecture of a Generative Adversarial Network (GAN) is designed to fill the holes. This network consists of two sub-networks. The first network generates the texture and structure information of hole regions, while the second network adopts an attention module combining contextual feature fusion to improve the quality of the hole-filled regions. The proposed network can effectively solve the problem of the hole-filling areas being prone to producing artifacts when fast motion exist in the foreground objects. Experimental results on multi-view video plus depth sequences show that the proposed method is superior to the existing methods in both subjective and objective quality.
Virtual view renderingHole fillingFeature fusionContextual features