Three-dimensional Electric Field Sensing Chip Via Piezoelectric Actuation in a Single Shielding Electrode
A three-dimensional electric field sensing chip equipped with a single shielding electrode and piezoelectric actuation is proposed. This design achieves high-sensitivity detection of the three-dimensional electric fields, simultaneously reducing excitation voltage and crosstalk noise is proposed. The sensing structure comprises one group of shielding electrodes and four sets of symmetrically distributed sensing electrodes. In response to piezoelectric actuation, the shielding electrodes undergo vertical vibrations, while the four sensing electrode sets generate induced currents when subjected to external electric fields. A differential decoupling method can be used to calculate the signals corresponding to the electric field components along the x-, y-, and z-axes. Finite element simulation was conducted to design the structure of the three-dimensional electric field sensing chip, analyze the feasibility of its measurement, and optimize key structural parameters. The fabrication process for the sensing chip was designed and implemented. Experimental results reveal that the output sensitivities are 0.2214 mV/(kV/m) for the x-axis, 0.3580 mV/(kV/m) for the y-axis, and 2.1768 mV/(kV/m) for the z-axis.The maximum measurement error for the three-dimensional electric fields remains < 5.3%.
Single shielding electrodeThree-dimensionalElectric fieldVertical vibration