首页|分布采样对齐的遥感半监督要素提取框架及轻量化方法

分布采样对齐的遥感半监督要素提取框架及轻量化方法

扫码查看
近年来,利用无标签数据辅助少量标签数据进行训练的遥感半监督要素提取任务被广泛研究,大多数工作采用自训练或一致性正则方法提高要素提取性能,但仍存在数据类别分布不均衡导致的不同类别准确率差异大的问题.该文提出分布采样对齐的遥感半监督要素提取框架(FIDAS),通过获取的历史数据类别分布,在调整不同类别的训练难度的同时引导模型学习数据真实分布.具体来说,利用历史数据分布信息对各类别进行采样,增加难例类别通过阈值的概率,使模型接触到更多难例类别的特征信息.其次设计分布对齐损失,提升模型学习到的类别分布与真实数据类别分布之间的对齐程度,提高模型鲁棒性.此外,为了降低引入的Transformer模型计算量,提出图像特征块自适应聚合网络,对冗余的输入图像特征进行聚合,提升模型训练速度.该方法通过遥感要素提取数据集Potsdam上的实验,在1/32的半监督数据比例设置下,该方法相较于国际领先方法取得了4.64%的平均交并比(mIoU)提升,并在基本保持要素提取精度的同时,训练时间缩短约30%,验证了该文方法在遥感半监督要素提取任务中的高效性和性能优势.
Remote Sensing Semi-supervised Feature Extraction Framework And Lightweight Method Integrated With Distribution-aligned Sampling
In recent years,the semi-supervised element extraction task in remote sensing,which utilizes unlabeled data to assist training with a small amount of labeled data,has been widely explored.Most existing approaches adopt self-training or consistency regularization methods to enhance element extraction performance.However,there still exists a significant discrepancy in accuracy among different categories due to the imbalanced distribution of data classes.Therefore,a feature extraction Framework Integrated with Distribution-Aligned Sampling(FIDAS)framework is proposed in this paper.By leveraging historical data class distributions,the framework adjusts the training difficulty for different categories while guiding the model to learn the true data distribution.Specifically,it utilizes historical data distribution information to sample from each category,increasing the probability of difficult-category instances passing through thresholds and enabling the model to capture more features of difficult categories.Furthermore,a distribution alignment loss is designed to improve the alignment between the learned category distribution and the true data category distribution,enhancing model robustness.Additionally,to reduce the computational overhead introduced by the Transformer model,an image feature block adaptive aggregation network is proposed,which aggregates redundant input image features to accelerate model training.Experiments are conducted on the remote sensing element extraction dataset Potsdam.Under the setting of a 1/32 semi-supervised data ratio,a 4.64% improvement in mean Intersection over Union(mIoU)is achieved by the proposed approach compared to state-of-the-art methods.Moreover,while the essential element extraction accuracy is maintained,the training time is reduced by approximately 30%.The effectiveness and performance advantages of the proposed method in semi-supervised remote sensing element extraction tasks are demonstrated by these results.

Semi-supervised learningDense feature extraction in remote sensing imagesDistribution alignment samplingLightweighting

金极栋、卢宛萱、孙显、吴一戎

展开 >

中国科学院空天信息创新研究院 北京 100094

中国科学院网络信息体系技术重点实验室 北京 100190

中国科学院大学 北京 101408

中国科学院大学电子电气与通信工程学院 北京 101408

展开 >

半监督学习 遥感图像密集要素提取 分布对齐采样 轻量化

国家自然科学基金

62201550

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(5)