首页|基于混沌映射的抗机器学习攻击强物理不可克隆函数

基于混沌映射的抗机器学习攻击强物理不可克隆函数

扫码查看
物理不可克隆函数(PUF)在硬件安全领域具有广阔的应用前景,然而易受到基于机器学习等建模攻击.通过对强PUF电路结构和混沌映射机理的研究,该文提出一种可有效抵御机器学习建模攻击的PUF电路.该电路将原始激励作为混沌映射初始值,利用PUF激励响应映射时间与混沌算法迭代深度之间的内在联系产生不可预测的混沌值,并采用PUF中间响应反馈加密激励,进一步提升激励与响应映射的复杂度,增强PUF的抗机器学习攻击能力.该PUF采用Artix-7 FPGA实现,测试结果表明,即使选用的激励响应对数量高达106组,基于逻辑回归、支持向量机和人工神经网络的攻击预测率仍接近50%的理想值,并具有良好的随机性、唯一性和稳定性.
Design of Strong Physical Unclonable Function Circuit Against Machine Learning Attacks Based on Chaos Mapping
Physical Unclonable Function(PUF)has broad application prospects in the field of hardware security,but it is susceptible to modeling attacks based on machine learning.By studying the strong PUF circuit structure and chaotic mapping mechanism,a PUF circuit that can effectively resist machine learning modeling attacks is proposed.This circuit takes the original excitation as the initial value of the chaotic mapping,utilizes the internal relationship between the PUF excitation response mapping time and the iteration depth of the chaotic algorithm to generate unpredictable chaotic values,and uses PUF intermediate response feedback to encrypt the excitation.It can further improve the complexity of excitation and response mapping,thereby enhancing the resistance of PUF to machine learning attacks.The PUF is implemented using Artix-7 FPGA.The test results show that even with up to 1 million sets of excitation response pairs selected,the attack prediction rate based on logistic regression,support vector machine,and artificial neural network is still close to the ideal value of 50%.And the PUF has good randomness,uniqueness,and stability.

Physical Unclonable Function(PUF)Machine learningChaotic mappingResponse feedback

汪鹏君、方皓冉、李刚

展开 >

温州大学电气与电子工程学院 温州 325035

物理不可克隆函数 机器学习 混沌映射 响应反馈

国家自然科学基金国家自然科学基金温州市基础性科研项目

6223400862374117G20220005

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(5)