首页|基于迁移学习和参数优化的干扰效能评估方法

基于迁移学习和参数优化的干扰效能评估方法

扫码查看
针对数字通信系统中传统误码率评估导致干扰效能评估结果单一的问题,该文提出了一种基于迁移学习和参数优化的干扰效能评估方法.该方法选取各信号处理模块的核心参数作为机器学习的训练指标,并以优劣解距离的评估结果作为分类标准,采用支持向量机训练评估模型.通过改进蚁群算法的全局搜索能力和迁移学习的知识传递特性分别解决了支持向量机中的参数优化问题和训练样本中的数据缺失问题.仿真实验结果表明,掌握源域数据集的支持向量机在模型准确度方面提升4.2%,牺牲初始收敛能力的参数优化与最优解的靠近程度提升4.7%,并且可以应用于数字通信系统的干扰效能评估.
Interference Performance Evaluation Method Based on Transfer Learning and Parameter Optimization
A novel method for evaluating interference performance based on Transfer Learning(TL)and parameter optimization is proposed to address the limitation of single evaluation results obtained using traditional error rate assessment in digital communication systems.This method selects the core parameters of each signal processing module as the training index of machine learning and considers the evaluation results of the Technique for Order Preference by Similarity to the Ideal Solution(TOPSIS)as the classification standard.An SVM(Support Vector Machine)is used to train and evaluate the model.The parameter optimization problem in the SVM is addressed by enhancing the global search capability of Ant Colony Optimization(ACO).Moreover,the issue of missing data in the training samples is solved based on the knowledge transfer properties of TL.The results of the simulation experiments demonstrate that the SVM with access to the source domain dataset increases the model accuracy by 4.2%.Parameter optimization,which sacrifices the initial convergence ability,enhances the proximity to the optimal solution by 4.7%.In addition,it can be employed to evaluate the interference performance of digital communication systems.

Interference performance evaluationDigital communicationSupport Vector Machine(SVM)Ant Colony Optimization(ACO)Transfer Learning(TL)

孙志国、肖硕、吴毅杰、李诗铭、王震铎

展开 >

哈尔滨工程大学通信与信息工程学院 哈尔滨 150001

上海航天电子技术研究所 上海 201109

干扰效能评估 数字通信 支持向量机 蚁群优化 迁移学习

国家自然科学基金黑龙江省自然科学基金

62001138LH2021F009

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(6)