首页|利用自适应融合和混合锚检测器的遥感图像小目标检测算法

利用自适应融合和混合锚检测器的遥感图像小目标检测算法

扫码查看
针对遥感图像背景噪声多,小目标多且密集排列,以及目标尺度分布广导致的遥感图像小目标难以检测的问题,该文提出一种根据不同尺度的特征信息自适应融合的混合锚检测器AEM-YOLO.首先,提出了一种结合目标宽高信息以及尺度宽高比信息的二坐标系k-means聚类算法,生成与遥感图像数据集匹配度较高的锚框.其次,设计了自适应增强模块,用于解决不同尺度特征之间的直接融合导致的信息冲突,并引入更低特征层沿自底向上的路径传播小目标细节信息.通过混合解耦检测头的多任务学习以及引入尺度引导因子,可以有效提高对宽高比大的目标召回率.最后,在DIOR数据集上进行实验表明,相较于原始模型,AEM-YOLO的AP提高了7.8%,在小中大目标的检测中分别提高了5.4%,7.2%,8.6%.
Remote Sensing Images Small Object Detection Algorithm With Adaptive Fusion and Hybrid Anchor Detector
A hybrid detector AEM-YOLO based on the adaptive fusion of different scale features is proposed,aiming at the problems of difficult detection of small objects in remote sensing images caused by the high background noise,dense arrangement of small objects,and wide-scale distribution.Firstly,a two-axes k-means clustering algorithm combining width and height information with scale and ratio information is proposed to generate anchor boxes with high matching degrees with remote sensing datasets.Secondly,an adaptive enhance module is designed to address information conflicts caused by direct fusion between different scale features.A lower feature layer is introduced to broadcast small object details along the bottom-up path.By using multi-task learning and scale guidance factor,the recall for objects with a high aspect ratio can be effectively improved.Finally,the experiments on the DIOR dataset show that compared with the original model,the AP of AEM-YOLO is improved by 7.8%,and increased by 5.4%,7.2%,and 8.6%in small,medium,and large object detection,respectively.

Remote sensing imagesDeep learningObject detectionDetection headAdaptive fusionAnchor boxes

王坤、丁麒龙

展开 >

中国民航大学电子信息与自动化学院 天津 300300

遥感图像 深度学习 目标检测 检测头 自适应融合 锚框

国家自然科学基金

62173331

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(7)
  • 3