首页|基于边缘领域自适应的立体匹配算法

基于边缘领域自适应的立体匹配算法

扫码查看
风格迁移方法因其较好的域适应性,广泛应用于存在领域差异的计算机视觉领域.当前基于风格迁移的立体匹配任务存在如下挑战:(1)转换后的左右图像需满足配对的前提;(2)转换后图像的内容和空间信息要与原始图像保持一致.针对以上难点,该文提出一种基于边缘领域自适应的立体匹配方法(EDA-Stereo).首先,构建了边缘引导的生成对抗网络(Edge-GAN),通过空间特征转换(SFT)层融合边缘信息和合成域图像特征,引导生成器输出保留合成域图像结构特征的伪图像.其次,提出翘曲损失函数以迫使基于转换后的右图像所重建出的左图像向原始左图像进行逼近,防止转换后的左右图像对不匹配.最后,提出基于法线损失的立体匹配网络,通过表征局部深度变化来捕获更多的几何细节,有效提高了匹配精度.通过在合成数据集上训练,在真实数据集上与多种方法进行比较,结果表明本该方法能够有效缓解领域差异,在KITTI 2012和KITTI 2015数据集上的D1误差分别为3.9%和4.8%,比当前先进的域不变立体匹配网络(DSM-Net)方法分别相对降低了37%和26%.
Edge Domain Adaptation for Stereo Matching
The style transfer method,due to its excellent domain adaptation capability,is widely used to alleviate domain gap of computer vision domain.Currently,stereo matching based on style transfer faces the following challenges:(1)The transformed left and right images need to remain matched;(2)The content and spatial information of the transformed images should remain consistent with the original images.To address these challenges,an Edge Domain Adaptation Stereo matching(EDA-Stereo)method is proposed.First,an Edge-guided Generative Adversarial Network(Edge-GAN)is constructed.By incorporating edge cues and synthetic features through the Spatial Feature Transform(SFT)layer.the Edge-GAN guides the generator to produce pseudo-images that retain the structural features of syntheitic domain images.Second,a warping loss is introduced to guarantee the left image to be reconstructed based on the transformed right image to approximate the original left image,preventing mismatches between the transformed left and right images.Finally,a normal loss based stetreo matching network is proposed to capture more geometric details by characterizing local depth variations,thereby improving matching accuracy.By training on synthetic datasets and comparing with various methods on real datasets,results show the effectiveness in mitigating domain gaps.On the KITTI 2012 and KITTI 2015 datasets,the D1 error is 3.9%and 4.8%,respectively,which is a relative reduction of 37%and 26%compared to the state-of-the-art Domain-invariant Stereo Matching Networks(DSM-Net)method.

Stereo matchingDomain adaptationEdge-guidedGenerative Adversarial Network(GAN)

厉行、樊养余、郭哲、段昱、刘诗雅

展开 >

西北工业大学电子信息学院 西安 710072

西北工业大学计算机学院 西安 710072

虚拟现实内容制作中心 北京 101318

立体匹配 领域自适应 边缘引导 生成对抗网络

国家自然科学基金陕西省重点研发计划江西省自然科学基金

620713842023-YBGY-23920224BAB212009

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(7)
  • 1