首页|基于深度学习的时间序列分类研究综述

基于深度学习的时间序列分类研究综述

扫码查看
时间序列分类(TSC)是数据挖掘领域中最重要且最具有挑战性的任务之一.深度学习技术在自然语言处理和计算机视觉领域已取得革命性进展,同时在时间序列分析等其他领域也显示出巨大的潜力.该文对基于深度学习的时间序列分类的最新研究成果进行了详细综述.首先,定义了关键术语和相关概念.其次,从多层感知机、卷积神经网络、循环神经网络和注意力机制4个网络架构角度分类总结了当前最新的时间序列分类模型,及各自优点和局限性.然后,概述了时间序列分类在人体活动识别和脑电图情绪识别两个关键领域的最新进展和挑战.最后,讨论了将深度学习应用于时间序列数据时未解决的问题和未来研究方向.该文为研究者了解最新基于深度学习的时间序列分类研究动态、新技术和发展趋势提供了参考.
A Review of Research on Time Series Classification Based on Deep Learning
Time Series Classification(TSC)is one of the most important and challenging tasks in the field of data mining.Deep learning techniques have achieved revolutionary progress in natural language processing and computer vision,and have also demonstrated great potential in areas such as time series analysis.A detailed review of the latest research advances in deep learning-based TSC is provided in this paper.Firstly,key terms and related concepts are defined.Secondly,the latest time series classification models are classified from four perspectives of network architectures:multilayer perceptron,convolutional neural networks,recurrent neural networks,and attention mechanisms,along with their respective advantages and limitations.Additionally,the latest developments and challenges in time series classification in the fields of human activity recognition and electroencephalogram-based emotion recognition are outlined.Finally,the unresolved issues and future research directions when applying deep learning to time series data are discussed.This paper provides researchers with a reference for understanding the latest research dynamics,new technologies,and development trends in the deep learning-based time series classification field.

Deep learningTime seriesNeural networksClassificationReview

任利强、贾舒宜、王海鹏、王子玲

展开 >

海军航空大学 烟台 264001

深度学习 时间序列 神经网络 分类 综述

国家自然科学基金山东省自然科学基金

62076249ZR2020MF154

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(8)